[I] [II] II II 1 (,, 2 VI,

IX , ; ; ; IX

(, ,), ₁ , _{II},

1.

, " ¹¹, " ⁰ "

XI

IX X

1. 2. . 7, 11, 12

3, 4, 5, 9, 22

. 13

. 8, 10, 19 . 14

15 - 21

, ^2<u>3 24</u> "; —

I: (14, 1000 — 2000 2, 0, 1, 2, ..., 9).

ally to the section of the) . and the second s ,

I.

2- ;

('), 2 -1

)

= 5 [1], $\frac{2.6-1}{52-2-5-3} = \frac{3}{4}$

= 5 — $= \frac{3}{4}$

=/(*).

S

 $f(x) = \frac{X - |x|}{1}$

/(•*) = 4 - + -3

-j-, ³. .

/(5) = 4-

f(x), 5, $\left(-^{3} \frac{3}{4}\right)$ = 5

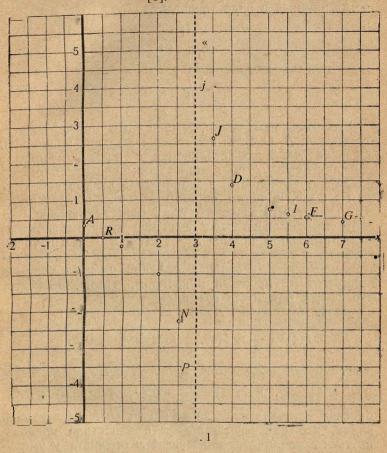
y=-j-

 $(10, \frac{19}{77}), (\frac{3}{2}, -\frac{8}{15})$;

[1]. , /(), [1] - (,, ")

[1].

, 0< <1).


and the control of t The control of the control of

=/()

=/()

,

[1].

.

$$y = \frac{\frac{21}{x} - \frac{3}{x^2}}{1 - \frac{2}{x} - \frac{3}{x^2}} \to 0.$$

, (,,

D, F, G, F

$$F$$
, = 4

$$\frac{2 \cdot \frac{11}{2} - 1}{\left(\frac{11}{2}\right)^2 - 2 \cdot \frac{11}{2} - 3} = \frac{8}{13} \sim 0,62.$$

D? ...

D, ?

$$\frac{2 \cdot \frac{7}{2} - 1}{\left(\frac{7}{2}\right)^2 - 2 \cdot \frac{7}{2} - 3} = \frac{8}{3} \sim 2,67.$$

/: ,—

```
=3-£^{1.6}_{\sim} L,
                            !).
              =3^{1}.
                                     ->3, >-3;
                                                                       J,
     3-j-,
          \frac{2(3+/)-1}{(3+/)2-2(3+/)-3} = \frac{5+2/}{4/2+} \frac{5+2/t}{(4+/)/i^{1/3}}
h \rightarrow 0
                   (4+h) h -> 0.
                                                              0 (
                            \frac{5+2/}{(4+h)} \overrightarrow{h} \qquad 0.0
 , J, D, , /, F, G, .
                                                                       I.
```

2<;<3. 2-^{1,2}2--, 2-^,³

(, *N*, , Q)

$$\frac{2(3-ft)-1}{(3-ft)^{12}-2(3-ft)-3} - \frac{5-2}{(4-ft)ft} \rightarrow -00, 1$$
 [2]

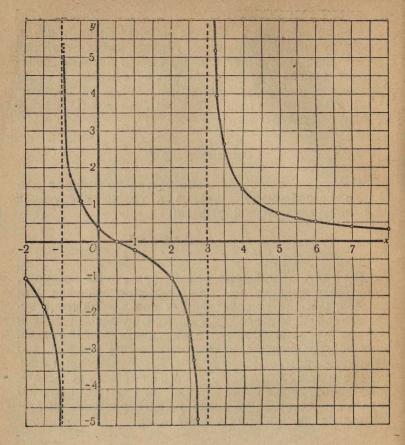
t

, , *N*, , Q,

—ft [1].

 $\frac{2x-1}{x^2-2x-3}=0;$ $R\left(\frac{1}{2},0\right)$ 1); == — 1, = — 2, = — 3 ____ =___ 1"

0 ,


 $, \qquad , \longrightarrow)^{1}.$

 $y = f(x) = \frac{1x^2 + 4}{2x^2 + 4}$

" , "

 $y = \frac{2x - 1}{x^2 - 2x - 3} \tag{}$

: 2.

Черт. 2

$$\frac{-1 + h,}{-\frac{2(-1+h)-1}{(-1+\frac{1}{2}-2(-1+ft)-3}} = \frac{3 + 2ft - 3 - 2h}{t} = \frac{-3 + 4 - 2ft - 3 - 2h}{(-4h+\frac{1}{2}-4h+\frac{1}{2}-4h)} = \infty.$$

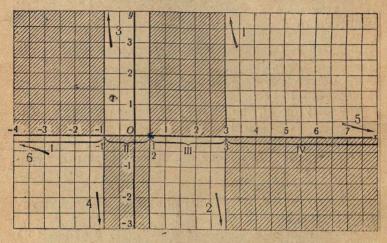
(24)

1 1 -2 -3 0 2 0 1 1 -2 -3 1 -1 0 2 1 -2 -3 0 1 -5 2 1 -2 -3 1 -1 0 3 1 -1 -2 0 2 0 3 1 -1 -2 1 2 0 4 1 -1 -2 0 1 -4 4 1 -1 -2 1 -3 0 5 1 0 -1 0 1 -2 6 1 0 -1 1 -3 0 6 1 0 -1 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 6 9 1 -3 0 *11 </th <th></th> <th colspan="6"></th> <th></th> <th colspan="5"></th> <th></th>														
2 1 -2 -3 0 1 -5 2 1 -2 -3 1 2 0 3 1 -1 -2 0 2 0 3 1 -1 -2 1 2 0 4 1 -1 -2 0 1 -4 4 1 -1 -2 1 -3 0 5 1 0 -1 0 2 -1 5 1 0 -1 1 -3 0 6 1 0 -1 0 1 -2 6 1 0 -1 1 -5 6 7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>					1							1		
3 1 -1 -2 0 2 0 3 1 -1 -2 1 2 0 4 1 -1 -2 0 1 -4 4 1 -1 -2 1 2 0 5 1 0 -1 0 2 -1 5 1 0 -1 1 -3 0 6 1 0 -1 0 1 -2 6 1 0 -1 1 -5 6 7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 <td>1</td> <td>`1</td> <td>_2</td> <td>_3</td> <td>0</td> <td>2</td> <td>0</td> <td>1</td> <td>I</td> <td>_2</td> <td>3</td> <td>1</td> <td>-1</td> <td>0</td>	1	`1	_2	_3	0	2	0	1	I	_2	3	1	-1	0
4 1 -1 -2 0 1 -4 4 1 -1 -2 1 -3 0 5 1 0 -1 0 2 -1 5 1 0 -1 1 -3 0 6 1 0 -1 0 1 -2 6 1 0 -1 1 -5 6 7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *10 1 -4 4 <td>THE RESERVE</td> <td>1</td> <td>-2</td> <td>-3</td> <td>0</td> <td>1</td> <td>-5</td> <td>2</td> <td>1</td> <td>-2</td> <td>-3</td> <td>1</td> <td>2</td> <td>0</td>	THE RESERVE	1	-2	-3	0	1	-5	2	1	-2	-3	1	2	0
5 1 0 -1 0 2 -1 5 1 0 -1 1 -3 0 6 1 0 -1 0 1 -2 6 1 0 -1 1 -5 6 7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0	3	1	-1	-2	0	2	0	3	1	-1	_2	1	2	0
6 1 0 -1 0 1 -2 6 1 0 -1 1 -5 6 7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0	SEX SERVICE		-1	-2	0	1	-4	4	1	-1	-2	1	-3	0
7 1 1 0 0 1 -3 *7 1 1 0 1 -6 9 8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0	5	1	0	-1	0	2	-1	5	1	0	-1	1	—3	0
8 1 -1 -6 0 3 0 *8 1 -1 -6 1 0 0 9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 1 0 0 0	6	1	0	-1	0	1	-2	6	1	0	-1	1	-5	6
9 1 -1 -6 0 1 -1 *9 1 -4 4 1 -1 0 *10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0	7	1	1	0	0	1	-3	*7	1	1	0	1	-6	9
*10 1 -2 1 0 1 -2 *10 1 6 9 1 -3 0 *11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0		1	-1	-6	0	3	0	*8	1	-1	-6	1	0	0
*11 1 -4 4 0 1 1 *11 1 -4 4 1 0 0	9	1	-1	-6	0	1	-1	*9	1	-4	4	1	-1	0
	*10	1	-2	1	0	1	-2	*10	1	6	9	1	-3	0
*12	*11	1	-4	4	0	1	1	*11	1	-4	4	1	0	0
	*12	1	-6	9	0	1	-1	*12	1	-6	9	1	2	1

: = - - - 1 4.

2. (.)

, , -, "(; ") ;


 $A^*)=f=S=3-.$

 $x - \frac{1}{2}$ $= ^{\frac{1}{2}} (:_{3}) (_{*+1})^{2}$ t^{2}

3 -1.)

		-\- I	* 1	—3	/(•*)
I	_ < X <—1	_	-		-
	— 1 < · · · ·	+	-		+:
	$\frac{1}{2}$ << 13	+	+	1 -	_
IV	3 < <	+	+	# 1 m	+
1					

). 25

Черт. 3

(II IV), I III —

I III).

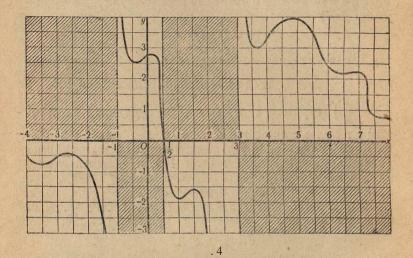
I III —

I III III —

I III IV , " -

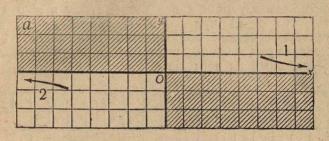
I III: , (. 3.)

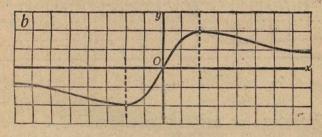
$$f\left(\frac{1}{2}\right) = 0,$$


$$\left(\frac{1}{2}, \right), -$$

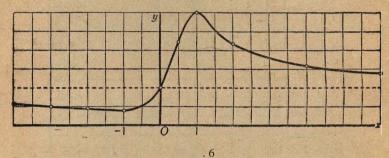
$$= -1 = 3,$$

$$";$$


01. = 3. 3 IV): -*-3, *>*3. [2] · =/() [|=!/(*)! — { — 3—>0), $\mathbf{u} \times -\frac{1}{2}$ IV), 3 (III): —>3, <3, 2 3 4). 5 1 :1)


3)

(


$$y = f(x) = \frac{2x}{x^2 + 1}$$

Черт. 5

6.

² -\-bx~\-c

$$^{2}-\ -\ -\ (\ +-\ -q).$$
 [5]

x²-f-

$$x^{2} + px + q = \left(x^{2} + px + \int_{+}^{p^{2}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \right) = p^{2}$$

$$= (+2\cdot)^{2} \cdot (-<0)^{2}$$
[6]

$$x^{2} + px - f - q = \frac{x^{2} + px - f - q}{p^{2} - q} \left(x + \frac{p}{2} - \sqrt{\frac{p^{2}}{4} - q} \right),$$

$$f_{4}^{2} - q < C0, - (\frac{p^2}{4} - q^5) > 0,$$

$$x^2 + px - \sqrt{q} = (x - \sqrt{p}_T y)$$

$$=$$
 $\frac{p}{2}$

),

[5],

 $=\frac{2x}{2+}$

 $= \frac{x^2}{2} \frac{1}{2} | \frac{jc_1 - i}{1?} |^1$

6,

"

$$\frac{2-1}{2}$$

2)

, (

$$= \frac{2}{x^{2} + 1} \qquad - \frac{\cancel{2} + \cancel{1} + 1}{\cancel{2} + 1} \qquad = 1$$

 $=\frac{1}{r^2}$

"

. 243).

No. 1 (The Control of the Control

{,)— -\- -\- =0 $x^{2J}_{r}y^{42} = l$, 2 — $^{\prime}$ -= 1, = 1, = 8171 >-I 3 (3 (= 0).0) 2 $=/()=\frac{lx^{1}-1-4-1}{2+1-1}$ 1. f(x)2. 3.

35

3*

fatbi

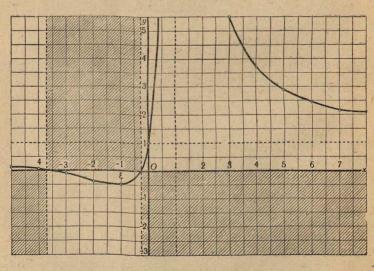
4.

"")

(,, (,, "), _^

+-). 5.

,


6. , , ,

;

7.

$$=/(*)=$$
 $\frac{2+4+1}{3-3-6}$

=/(*)= 2 - 2x-f-1

$$\frac{}{}$$
 $\frac{}{}$ $\frac{}{$

$$f(x) = 0 = -2 - \frac{1}{3} - - 3,73$$

$$:= -2 - \frac{1}{3} - - 0,27.$$

-1.

* = 4-----1_f0

1. 1, 1, :, 2, jc²-f-1, 2 — \, — I, (— I)², 2-\- ~{-1 30 D. D. (2). 0,007; 0,000005). 0,15; 0,03.

4- — 1:1. 0,20 0,07. 2:1 ,

; , D ,

2. , D

3. (...). (...). $-\frac{x^2+x+1}{2}$ $-\frac{x^2+x+1}{2}$

3.

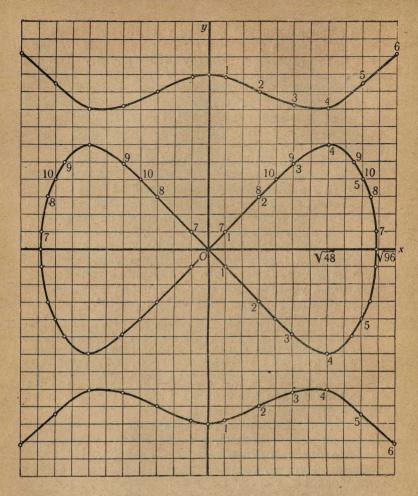
4
 — 96 3 = y^{i} — 100 2 [1]

$$/-100/+1215 = 0;$$

$$= 50 \pm 1/2500 - 1215 = 50 + /1285 - 50 \pm 35,85 =$$

$$= 14,15 \qquad 85,85.$$

$$-- \pm 1/14/5 \sim +3,76$$


$$\sim +/55,85^{-1} +9,26.$$

1.

И

35,85) _^* (14,15 85,85).

```
14,15
                    46©©:
                             4550 4650.
                     6
                0.01):
                                      , 746X6<4550,
      747 X 7 > 4650.
                                                85,85
                            121 ©©,
               12 050
                           12150.
    1846 X 6 < 12050, 1847 X 7 > 12 150.
                          -15 < x < -|-15, -12 < ^ < +12^1.
                            "(.8)^2.
3.
          1 « < 12, 1 < < 12 (
                                            ).
2
          : 1)
    , 2)
```


.8

2V. 24,

$$=0, -0, ; = \sqrt{96}$$
, $= j/48$.

$$= \pm /50 \pm \sqrt{*^4 - 96^{**} + 2500}$$

$$= \pm /48 \pm / 6 = 2 \pm 1$$
[2]

5.

1)

 $;^{4} - 96 : * + 2500 = (* - 48)^{2} + 196 > 0,$ [2],

$$4 - 96 :^2 + 2500 < 50$$
 [4]

$$\sqrt{4-96};^2+2500>50.$$
 [5]

[4] [5],
$$(2 - 96) << 0$$
 [4']

$$\frac{y}{x}$$
 — (,, "

$$\frac{y}{x} \to \pm \sqrt{0.96} \sim \pm 0.98,$$

45°.

4.

$$x = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$$

zi-JjQ>

$$x^2$$
- j - $4x$ — $10 = 0$

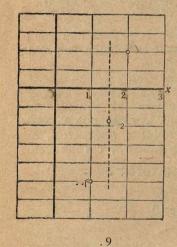
= -2 ± 14 -----2 $\pm 3,74$;

1,735 <*< 1,745.

1,74:

$$y=f^{*} = 3-f^{4} - .$$

$$- ($$


$$/0) = 1^{2} - 4 \cdot 1 - 10 = -5 < 0,$$

$$/(2) = 2^{2} + 4 - 2 - 10 = 2 > 0.$$

$$(.9)$$

$$(.9)$$

$$(.9)$$

(,,

 B_{ν} ,

2,_

 $x^2 - j - 4x - 10 = 0.$

X /(•*) 1 -5 2 2 1,5 -1,75^2 1,7 -0,310,44 1,8 2 0,07 1,75 -0,012

1,74

4.

4

3,

1,74, 1,75; * = 1,745: 1 4 [I].

1,74

4

$$/(1,745) = 1,745^{2} + 4-1,745 - 10 \sim 0,026 > 0.$$

$$1,745,$$

$$1,74 < 1,745;$$

$$-1,74.$$

$$0,05$$

$$-1,740$$

$$10 - 0,05$$

$$1,740 - 1,745$$

$$10 - 1,740 - 1,745 - 1,750$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

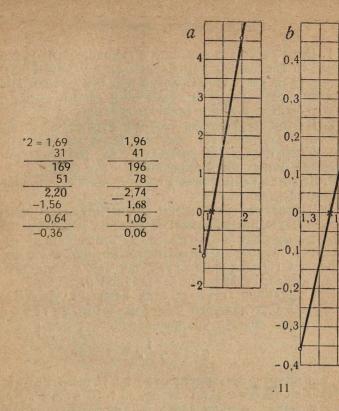
$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$

$$10 - 1,741, - 1,741$$


$$10 - 1,741, - 1,$$

4 .

= 1,2.

$$\begin{bmatrix} 3 - 1,2 & -1 = 0 \\ 1 - - - \vdots - - - - \end{bmatrix}$$

X	*2	?	1,2 :	Xs-1,2 -1
1	1	1	1,2	-1,2
2	4	8	2,4	+4,6
	1,69	2,20	1,56	-0,36
1,4	1,96	2,74	1,68	+0,06
1,37	1,877	2,571	1,644	-0,073
1,38	1,904	2,627	1,656	-0,029
1,39	1,932	2,686	1,668	+0,018
1,385	1,918	2,657	1,662	-0,005

!

2.

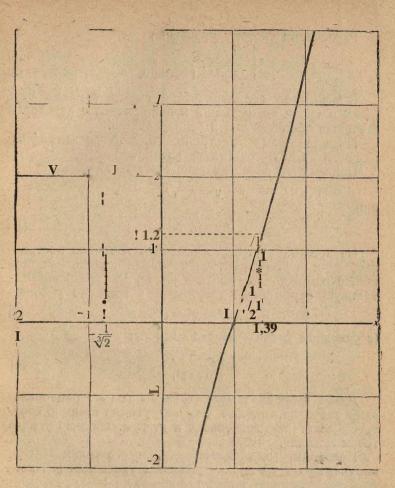
3.

4.

— —1=0,

12.

(


>>> § ___

5.

0,5sSw=s4,0 --- 0,5; 0,6; 0,7

-1,2.

 $u < \frac{1}{3} \frac{1}{4} - \dots 1,89$

. 12

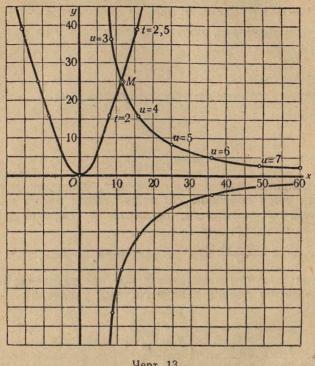
5.

}'

'53

```
(3=3,
                                                                                    [1]
                         1^{-3} ^{2} = 10000000.
                                                                                     [2]
                               x^*=y^*=t^{13}
\begin{cases} x=t^3, \\ y=t^4. \end{cases}
                                                                                    [3]
               tx^{\wedge}O),
                                                                                     [4]
                                                                         [4], (,),
t
                                    [1].
                                                                           [4],
         t,
       [1].
                 [1],
                                         [4]
                                 t = \sqrt[3]{x}
```

$$(t - \frac{1}{4}]$$


$$= V = (j/;)^{4} (= 0),$$

$$= \pm \frac{1000}{*}$$

$$= \pm \frac{1000}{,^{*}}$$

I

(1), (2).

Черт. 13

17-

[4].

56

=3, =4, -2, 8=3.

(:13)

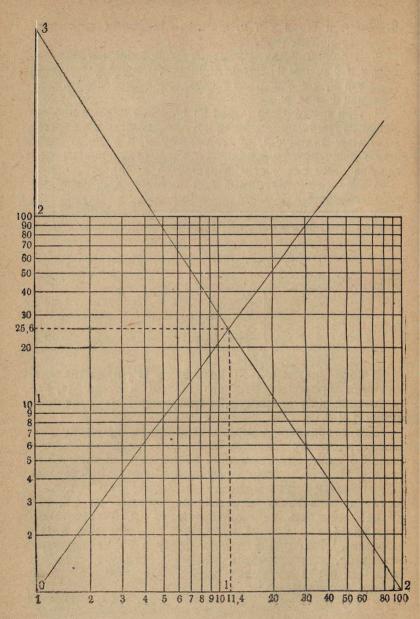
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Take a said to	The Plant Street	the terms of the said	THE THE PARTY OF T				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	t		<4 18			0-1	
	3 2,5 2,3 2,2 2,25 2,26	9 6,25 5,29 4,84 5,06 5,11	81 39,1 28,0 23,4 25,6 26,1	6560 1530 784 548 655 681	~43.10 —2340000 615000 300000 429000 464000	~130.108 ~5-108 —1,41-10» 660000 965000 105900!)	>106 >106 >106 <106 <106 >106	

$$M = x^{3}$$
, 4
 $\pm (*^{2}5,6)$

$$t^n = 10'$$
 (= aS-j-PY< 16).

		7	
2 2 3 2 3 2 4 3 2 2 4 3 2	3 5 4 3 5 7 5 5 7 3 3 3	1 1 1 1 1 1 1 1 1 1 3	1 1 1 2 1 1 2 1 1 2 1 1 4 1

		Y	0
2	5	1	3
2	7	1	2
2	9	1	1
3	4	2	1
3	8	1	1
4	7	1	1
5	6	1	1
5	7	1	1
2	3	1	5
2	3	3	2
2	5	1	4


		Y	5
2 2 3 3 4 5 3 3 2 2	7 9 4 10 5 8 5 7 3 5	1 1 1 1 1 1 1 1 5 3	3 2 3 1 2 1 3 3 1

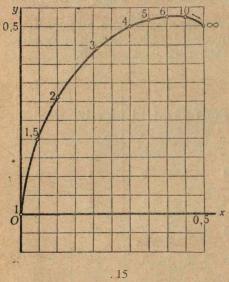
); , t i,

.

(1)

2. t 1) 3. 1 000000 4. 5. $\lg_{10} x = X, \lg_{xg} y = Y,$ $\beta X = a Y$, $\delta X + \gamma Y = \delta$ [2'] (X, Y)[1'] (, (3), (2') — (x, y)-(x, y)-((X,J

6.


$$x = \frac{1}{2} \frac{(*+!)(-1)^*}{(*+3)^* - 2t(P+3)} \frac{1}{(f+!)^*(*-!)_m}$$

-

". 62)

t		.3	$t(t\cdot 3)$	t+ 1	<i>t</i> – 1	(<+!)•	(- I) ²
1	1	4	4	2	0	4	0
2	4	7	14	3	1	9	1
3	9	12	36	4	2	16	4
4	16	19	76	5	3	25	9
5	25	28	140	6	4	36	16
6	36	39	234	7	5	49	25

(# +!)(*-!)* (f-Hl)* (/—1)	$\frac{(t+1)(t-1)^2}{<(**+3);t}$	$(t+1)^2(t-1)$	x	y
0	0	0,00	0,00	0,00	0,00
3	9	$\frac{3}{14} = 0.21$	$\frac{9}{14} = 0.64$	0,10	0,32
16	32	$\frac{4}{9} = 0.44$	$\frac{8}{9} = 0,&9$	0,22	0,44
45	75	$\frac{45}{76} = 0,59$	$\frac{75}{76} = 0,99$	0,30	0,50
96	144	$\frac{24}{35} = 0,69$	$\frac{36}{35} = 1,03$	0,35	0,52
175	245	$\frac{175}{234} = 0.75$	$\frac{245}{234} = 1,05$	0,38	0,52

2, 3, 4, 5, 6,

-

 $t=\setminus$,

[1]

(. 15);

Y.

-*\ -0.50.

1 2,

$$t = 1,5 = -$$
 . $= 0,04 = ? 0,20$.

, 1 (,),

$$-=\frac{t+1}{t-1}.$$

" (,,)(t=4)

+1-*2, t-1>0, 1.

 $\frac{1}{1} = \frac{1+1}{1} \rightarrow (t \rightarrow 1, <)>1).$

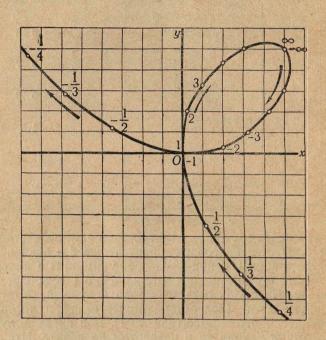
, t o 1

,

t:

t	X	
1 1	$ \begin{array}{c} 3 \\ ! > \sim^{0.12} \\ -2 \cdot 0.29 \end{array} $	9 0,35 0,57
- 1	⁴⁵ 0,46	$-\frac{75}{98}$ or
10	— 1,5	-1,8
1 100	~17	17
->	_	→-

[1],
$$t^{-*} 0$$


t— 1),

(t = 0, t=1)

t

t=0

,

16,

5

0

[1] («

[2], [1]. [2] t;

[1],

[3]

[3]:

[1] [1], [3],

 $\left(\frac{1}{2} \frac{(t+1)(t-1)^2}{t(t^2+3)}\right) + \left\{\frac{1}{2} \frac{(t+1)^2(t-1)}{t(t^2+3)}\right\}^3 =$ $=\frac{1}{2}\frac{(-1)(<-1)-1}{/(*-3)},\frac{(<+1)<-1)}{2};$

[1],

[3].

1,

5*

[3], [1]; t, t,). [1] [3] (1. 12 6 $x \simeq \frac{-(t \pm W(at \pm 1))}{(-(\sqrt{0^3} + (\sqrt{1^3})^3)^3}, \quad y = \frac{(t \pm a)(at + \sqrt{y})}{(<+)(3 + -)^8},$ t. 24.

$$-\frac{(+)(^{\wedge})^{\wedge}}{(puyqvf+(pv+qu)^{\overline{a}})^{\overline{a}}}\frac{-(pu+qv)^{2}(pv+qu)}{(pu+qv)^{a}+(pv+quf)}$$

):

$$\begin{array}{c} t, \quad , \, v; \quad , \, qv, \, pv, \, qu; \\ pu \, + \, qv, \, (pu \, + \, qvP, \, (pu \, + \, qv)^a \backslash \\ pv \, + \, qu, \, (pv \, + \, qu)^*, \, (pv \, + \, quP; \\ (pu \, + \, qv) \, (pv \, + \, qu) \backslash \, (pu \, - \, f\, qv)^* \, (pv \, + \, qu); \\ (pu \, + \, qv) \, 3 \, + \, (pv \, + \, qu)^*; \\ x \, , \quad y \, . \end{array}$$

$$h = pu, k = qv, l - pv, m = qu; r - h + k, s = l + m;$$

$$P^{2} = r s Q = r^{*} - R - r^{a} + s^{a}, \frac{P}{R} y = -^{-}.$$

 $a = -\frac{2}{g}$

$$x = \frac{(2u+5v)(5u+2v)^2}{(2u+5v)p+(5w+2)}, -\frac{(2+5)^2(5+2)}{(2u+5v)^a+(5u+2v)^{a+1}}$$

1.

2.

$t = \overline{v}$		٧	h=2u	k=Sv	l=2v	= 5	r =h -\-k	s=l+m
0	0	1	0	5	2	0	5	2
1	1	1	2	5	2	5	7	7
2	2	1	4	5	2	10	9	12
5	5	1	10	5	2	25	15	*27
	1	0	2	0	0	5	2	5
1 2	1	2	2	10	4	5	12	9
-1	-1	1	-2	5	2	-		-3
_2	<u>2</u>	1	_4	5	2	-10	1	-8'
-5	-5	1	-10	5	2	-25	_5	-23
$-\frac{3}{2}$	-3	2	-6	10	4	-15	4	~11

4. (10 —15),

), t=- t-=I-

	2	2	5	52	43	$P=rs^2$, III res	R=r*-\-\$	'- <i>x</i> ≂R	y=R
5	25	125	2	4	8	20	50	133	0,15	0,38
7	49	343	7	49	343	343	343	686	0,50	0,50
9	81	729	12	144	1730	1300	972	<u>2460</u>	0,53	0,39
15	225	3380	27	729	19 700	10 900	Si 1	23100	0,47	0,26
2	4	8	5	25	125	50	20	133	0,38	0,15
12	144	1730	9	81	729	972	1300	2460	0,39	0.53*1
3	9	27	-3	9	-27	27	—27	0		_2
1	1	1	-8	64	-512	64	-8	-511	-0,13	0,02
5	25	-125	-23	529	<u>_12 200</u>	-2640	-575	12 300	0,21	0,05
4	16	64		121	-1330	484	_176	<u>_1270</u>	_ ,	0,14

5.

6.

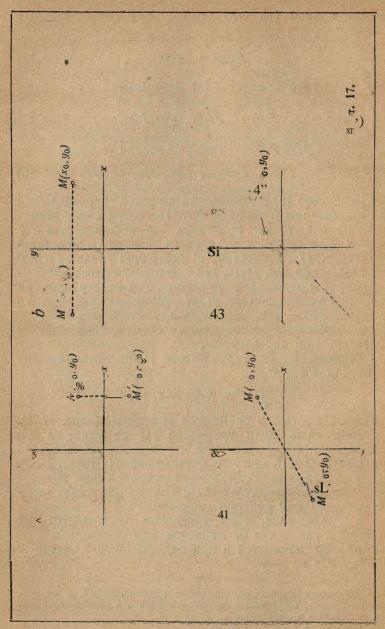
 $t - \frac{1}{t}$

[1].

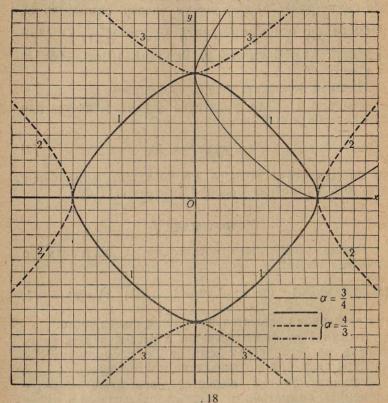
7.

 $\frac{1}{1}$ N, $\frac{3}{1}$

(>) = 0


1. 2. 3.

1. [1]


F(x,-y) = F(x, y), [2]

[1]. [2]

```
[1].
                   [1]:
                ( , ) = 0-
                                                [3]
                    [2]
         F(x_0, -x_0) = F(x_0, x_0).
                                                [4]
                            [3]
                                 [4],
               (_{0},-_{})=0.
                                                [5]
        [5]
                   ,
[1].
. 17 ),
             [1],
                            [1]
            F(-,) = F(x,),
                                                 [6]
                                   [1] ( . 17 ).
                          [1]
      3.
                                   [1]( . 17 ).
```

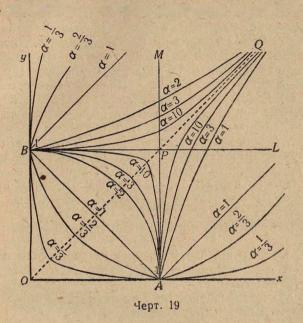

), 2) $^2=2$), 4) - (?), 5) 3 -\- 3 = (?), 6) $= -*^{*}, 7) * +$ = -\- - , 8) . -{- ²= -\- , 9) = 1, 10) * −96 * = = −100 ². [1] 4. F(y, x) = F(x,),[7] [1] $(17 d)^{1}$. (1) $-\{-*=1, (2) *- *=1 (3) - *=-1,$: 1 = 10 90°. 0,1.

$$3 - 3 -$$
 $= 1$,

3)
$$\sqrt[3]{x^4} - \sqrt[3]{4} = -1$$
,

$$y=\pm V$$
 (i-W.

$$v=\pm |/(1-f^*)^3$$


x	x4	3 / ?	$1 - \sqrt[3]{x^4}$	$\left(1-\frac{3}{\sqrt[4]{x^4}}\right)^3$	$y < \frac{4}{\left(1-\frac{3}{V}\right)}$
0,0	0,0000	0,00	1,00	1,0000	1,00
0,1	0,0001	0,05	0,95	0,8574	0,96
0,2	0,0016	0,12	0,88	0,6805	0,91
0,3	0,0081	0,20	0,80	0,5120	0,85
0,4	0,0256	0,29	0,71	0,3579	0,77
0,5	0,0625	0,40	0,60	0,2160	0,67
X	X*	3 <u>X*</u>	3	$\left(\sqrt[3]{x^4}-1\right)^3$	»>>> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1,0	1,0000	1,00	0,00	0,0000	0,00
i,i	1,4641	1,14	0,14	0,0027	0,23
1,2	2,0736	1,28	0,28	0,0220	0,39
1,3	2,8561	1,42	0,42	0,0741	0,51
1,4	3,8416	1,57	0,57	0,1852	0,66
1,5	5,0625	1,72	0,72	0,3732	0,77

X	3 1 +/-*4	(>+% ⁴ f	\[\left\{ \te}\} \te\tikt\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \te\{ \te}\} \te\tikt\{ \left\{ \left\{ \left\{ \left\{ \left\{ \te\tikt\{ \left\{ \left\{ \te\tikt\{ \te\tikt\{ \left\{ \te\tikt\{ \} \te\tikt\{ \te\tikt\{ \te\tikt\{ \te\tikt\{ \te\ti\} \te\tit\{ \te\tikt\{ \te\ti\} \te\ti\tikt\{ \te\tikt}\} \te\tit\} \\ \te\t
0,0	1,00	1,00	1,00
0,1	1,05	1,16	1,04
0,2	1,12	1,40	1,09
0,3	1,20	1,73	1,15
0,4	1,29	2,15	1,21
0,5	1,40	2,74	1,29
0,6	1,51	3,44	1,36
0,7	1,62	4,15	1,44
0,8	1,74	5,27	1,52
0,9	1,87	6,54	1,61
1,0	2,00	8,00	1,66
	• • • • •		

X	X3	x	4 8 1 / x3	° ''''V	++	1 V 1 L Z	V 1+ V -55	$y_1 = \sqrt[3]{1 - \frac{1}{1 - 1}}$	$\nu = \sqrt[3]{\binom{1+}{1+}}$
0,0	0,000	0,000	0,000	1,000	1,000	1,000	1,000	1,00	1,00
0,1	0,001	0,032	0,179	0,821	1,179	0,936	1,056	0,77	1,24
0,2	0,008	0,089	0,298	0,702	1,298	0,889	1,091	0,62	1,42
0,3	0,027	0,164	0,405	0,595	1,405	0,841	1,120	0,50	1,57
0,4	0,064	0,253	0,503	0,497	1,503	0,792	1,145	0,39	1,72
0,5	0,125	0,354	0,595	0,405	1,595	0,740	1,168	0,30	1,86

3.
$$= 1$$
 $= 2$ $= 2$ $= -\frac{2}{3}$

$$1^{****6}$$
. = 1

(2) (3) (3) (2) (2) ,, (3). (1) (2) (3) -(3) yBPQ. 1 1, 2, 3, 10, · 5. I. II. III. 15 [I], * II III (1) (3) (2) (1) (2) 82

(1) III (4) *+ *=-1, (1)

6.
$$4 - \left(\frac{x}{a}\right)^{\alpha} \pm \left(\frac{y}{b}\right)^{\alpha} = 1.$$

en produce de la companya del companya de la companya del companya de la companya

 $f(\)=\ +\ .$

; h

). h,

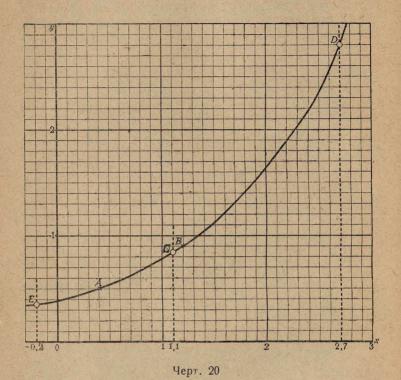
 $f(t) = -\frac{1}{2}, \qquad h$

$$f(-j-h) = (-j-h)--|--|$$

$$/(x-h)$$
 — $/() = |/ra() : -{--/} - m$ — (-\-) = mh . [2]

6*

```
[1];
                                                 [2] h = 1,
                /(*+\setminus)-f(x)=m,
                                                           [3]
                     f( )
                                  [1]
                                                  ; = 0:
                        /(0) = .
                                                           [4]
                         (,,
              [1]
                                       :=0.
           f(x) - M^x N \{ > 0, N > 0 \}.
                         h
h,
            ).
                    'n
                                                   -\-h.
                      f(x) = M^x N,
                                                             h
```


 $f(x--h) = M^{x+h}N.$

[1]. [2'] h, /() = 0 : [17] /(0) = N.[4'] =0.[,,). N, $N + \frac{p}{100}N = \frac{p}{100}$ [3'] = 0, f(0) = N, f(1) == O + Ioo) N >!+& = "• [5] 85

 $\frac{f(x+h) M^* + \underline{k}N}{f W M^*N} M^h$

/7 = 100 (-1). · [6] [1] N. 3, (TM = . $M'>N=y_2-$ 1

X1 Xi). IV 8 5 I. (). II.

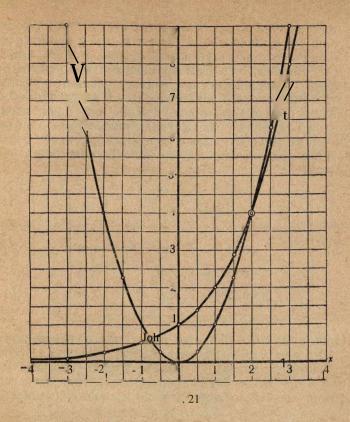
= M*N. $M^{oa}N = 5,$ $\langle M^{2}N = 9,$ $M = \left(\frac{9}{5}\right)^{\frac{5}{4}} = 2,085; \mathcal{N} = (\text{~y~J})^{\frac{125}{3},73}.$

* 12,085*1.

0	1	3,73
0,5	1,444	5,37
1	2,085	7,79
1,5	3,011	11,23
2	4,347	16,23
2,5	6,278	23,43
FA		1000

I.

II.

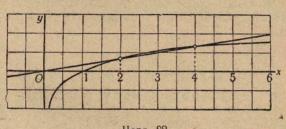

$$\begin{array}{cccc} 0.4 & \lg & + \backslash gN = 0.6990 \\ 1.5 & \lg & + \lg N = 0.9542 \\ \hline 0.8 & \lg M & = 0.2552 \\ IgM & = 0.3190 \\ \hline M & = 2.084 \\ \hline 1.2 & \lg M + 3 & \lg M = 2.0970 \\ & 2 & \lg TV = 1.1428 \\ & & \lg M = 0.5714 \\ \hline & = 3.727 \\ \end{array}$$

$$lgjy = 0.3190* + 0.5714$$

*	0,3190*	lg	
0	0	0,5714	3,73
1	0,3190	0,8904	7,77
2	0,6380	1,2094	16,20
<\5	0,1595	0,7309	5,38
1.5	0,4785	1,0499	11,22
2,5	0,7975	1,3689	23,39
1.1	0,3409	0,9123	8,17
2,7	0,8613	1,4327	27,08
-0,2	1,9362	0,5076	3,22

1. $(1 = 10 \ 2 - 3)$ 8; 9; 12; 15; 16 20 2. (-2)(-2)<[0]9. [1] $2^2 = 2^2$. $\frac{4}{2^4} = 4^2$.

[1],


2 —

$$(\sim 3, |), (\sim^{2})' (-1) > (1.2), (2,4), (3,8), (4,16),$$

; (0,0), (1,1), (2,4), (3,9), (4,16) ; >0 ; <0. 21, <0.

	xlg2	2	9110	*
-0,7	0,2107= ,7893	0,62	>	0,49
-0,8	— 0,6321 = ,3679	0,23	<	0,64
0,75	— 0,2258= ,7742	0,59	>	0,56

 $\frac{\text{lgio2}}{2} \quad x = \langle g_{10} x.$ [2']

Черт. 22

(. 22);

$$=^{-1}g_{0,15}$$
.

9

· 1000 ., —10 000 .

%;

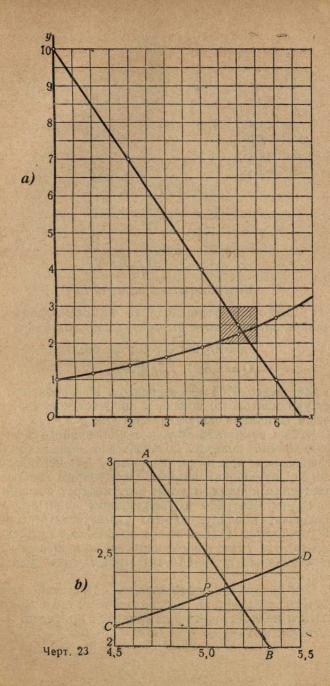
?

10000-Q.1000

$$1000.M^{x} = 10\ 000 - Q, 10QOuc,$$

=10-Qx. [3]

=18, Q=1,5
(. 23)


$$= 1/4 = 1 > 18$$

$$|gM = 0.07188 \sim 0.0719$$

$$|-1/18^{-1} = 10 - 1,5 :$$

	xlgM			1 _ x
5,12	0,3681	2,334	>	2,320
5,11	0,3674	2,330	<	2,335
5,115	0,36766	2,3316	>	2,3275

$$-5,11$$
 = $-5,11$ = $-5,1$

2.

Q.

23

, 23b

).

3.

10

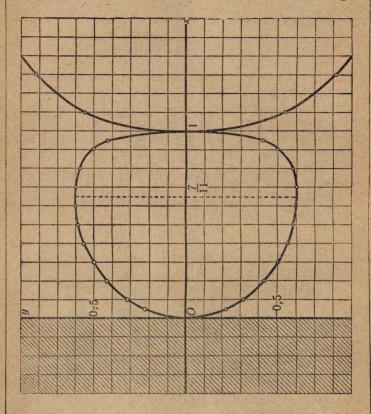
= "(1—)?,

1) $0 \leqslant x \leqslant 1$.

2)

3)

$$\alpha = \frac{1}{2}$$
, $\beta = \frac{2}{7}$


(24)

= ± · (\-)\
= {1 -)\

14.

*>0.

 $|y| = \sqrt{x} \sqrt[7]{(1-x)^2}$, $|g|y| = \frac{1}{2} |gx + \frac{2}{7} |g|1 - x|$.

X	lg	1 -ylg-r	111	1111	- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0,0	—00	-00	1,0	0,0000	0,0000	-00	0,000
0,1	1,0000	1,5000	0,9	1,9542	1,9869	1,4869	0,307
0,2	1,3010	1,6505	0,8	1,9031	,9723	1,6228	0,420
0,3	1,4771	1,7385	0,7	1,8451	1,9557	1,6942	0,495

					196		
0,9	,9542	,9771	0,1	,0000	,7143	, 6914	0.491
1,0	0,0000	0,0000	0,0	_00	-* 00	_' 00	0.000
		+					
0,05	2,6990	_, 3495	0,95	,9777	_, 9904	_, 3399	0,219
0,95	1,9777	1,9888	0,05	2,6990	1,6283	1,6171	0,414
1,1	0,0414	0,0207	0.1	0000	7112	7350	0.542
1,1	0,0414	0,0207	0,1	, 0000 1,3010	,7113 1,8003	,7350 1,8399	0,543
1,3	0,0732	0,0390	0,2 0,3	1,4771	1,8506	1,9076	0,692
1	0,1139	0,0370	0,5	1,4//1	1,0500	1,5070	0,000

1.

3. = 0 <! 4. (,, $0 \leqslant x \leqslant 1.$ ($<_{\cdot}, <_{\cdot}$ 5. :<0; (0, 0)(1,1), = 1; >1. 45° s<1 -1 45°, 135°). = 0, 6.).

100

1,

$$(0 < <1, ->0)$$

$$0,1$$

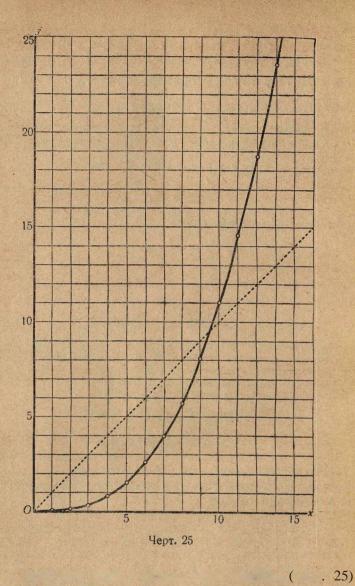
$$? = :~= 7!4$$

$$= \frac{7}{7+4} = ^{7}$$

$$= *(1-)?$$

$$1gT = *(lg-* + plg(1-))$$

$$= \overline{x}7 = \overline{}$$


и условие '= 0

$$\frac{\overline{x} - pi_{\underline{\underline{}}} = 0,}{1 - \frac{\alpha}{+}} \quad 1 - \frac{\beta}{+\beta}.$$

=/(*)= (*3 + -*2)-

$$=/(*)=(*^{\frac{1}{3}}+-*^2)-$$
 [1]

X	*			X	
0 1 2 3 4	0,00 0,02 0,12 0,36 0,80	5 6 7 8	1,50 2,52 3.92 5.76 8,10	10 11 12 13 14	11,00 .52 18,72 23 66 29,40

;=10 , _ =11.

-, -10.
=
$$\frac{1}{jqq}(a^{3} +)$$
,
 $^{3} - ^{2} - 1000 = 0$.

, , ,

, , , , , , 9,7.

-0; 1; 2;...

	X		X		,
	- Depression				
0	0,0	5	7,7	10	9,7
1	4,3	6	8,1	11	10,0
2	5,6	7	8,6	'12	10,4
3	6,5	8	9,0	13	10,7
4	7,2	9	9,4	14	10,9

 $x^{\wedge}g(y)$.

[2]

$$a:=gty)$$
 $-f(x)$.

$$x - g(y)$$

$$x = g(y) = VWf^{\land} \setminus .$$
[4]

$$=/(\) = - \setminus \begin{cases} 2x \\ (\ . \$9, \ . \$5); \end{cases}$$

$$X^{2} - 2X + 1 = ,$$

$$-1 \le y \le + 1$$

n

$$x_2 = \frac{1-l}{V} = \frac{1-l}{1+l(1-2)}$$

$$* = () = \frac{1 \pm /1 - V^{2}}{y} - 1 < - < +$$

=
$$f(x) = jQQ^{\frac{1}{(3)}} + 2$$

$$x^{s} - x^{2} - 0,063 = 0$$

+ $1^{0},3325$,

$$=\frac{1}{(-3+:3)}$$

$$y \le -8$$

(-- < : <-+): 0

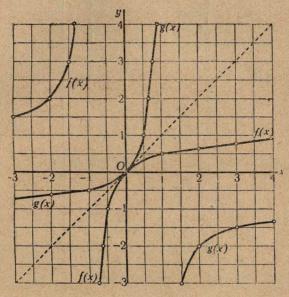
$$x = g(y),$$

$$: ^ = -0.3$$
 $_{2.3} = -0.35 +$ $_{= 0.00063} = g(y)$

$$y = f(x) =$$

$$-1 \leqslant x \leqslant 0$$

(,, ")


$$y=I(x)$$
 [6]

$$x = g(y); [7]$$

g, /.

```
[7]
                                                                  [8]
                             y=g(x).
                                         [6]
              [6J:
                         [8],
[7]
                                                         [6]:
                                                   [8],
                                          [6],
                                                                [8]
                                              [6]
     . 74)1.
                                                                  25
             [6],
                          =\frac{1}{100}(+).
                                        11
                           y=f(x);
           : 1)
                                                        , 2)
      (
                              =g(x),
3)
       4)
    1
```

$$*=$$
 $*)=1+x$

Черт 26

$$=\frac{x}{1+x}$$

$$-\frac{y}{1+}$$

$$S(x) = T & x-$$

x	$f(x) = \frac{x}{1+x}$	x	$g(x) = \frac{x}{1 - x}$
0	0	0	0
1	$\frac{1}{2}$	1 2	- 2
2	0 1 2 2 3 3 4 4	3	$-\frac{3}{2}$ $-\frac{4}{3}$ $-\frac{5}{4}$
3	$\frac{3}{4}$	4	$-\frac{4}{3}$
4	4 5	5	$-\frac{5}{4}$
-1 $-\frac{1}{2}$ $-\frac{3}{4}$	-	$\frac{3}{2}$	_ 3
$-\frac{2}{3}$	1	-1	$-\frac{1}{2}$
$-\frac{1}{4}$ -2	- 3	-2	$-\frac{2}{3}$
- 2 - 3	2 3 2	-3	$-\frac{3}{4}$
$-\frac{3}{2}$	3	$\frac{1}{2}$	1
		$ \begin{array}{c} -3 \\ \frac{1}{2} \\ \frac{2}{3} \end{array} $	2

,,

· (

).

57) - --

1)
$$-2$$
, 2) +1, 3) - $\stackrel{x}{,}$ 4) 2 , 5) - , 6) 1- ,

7)
$$\frac{1}{x}$$
, 8) - $\frac{1}{2}$, 9) 2; -1,)^,) 2(-1),

12)
$$\frac{1-x}{2}$$
, 13)3 (1-), 14) , 15)/5 ,

16)/
$$-\overline{1}$$
, 17) 1-/, 18 $\overline{)}3+j/-f-$, 19)]/^±-3,

20) 4-+1, 21) 4-2, 22) 1-4, 23)
$$\frac{-}{1+1^{24}>*!}$$
.

29) (+ 3, 30)
$$(X-3)/2$$
 31) -4- :

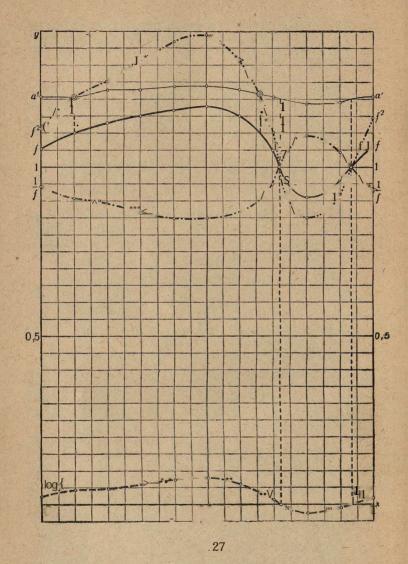
32) 2 - -X². 33)
$$J/I5_{x},34) |/+,$$
 35) $\sqrt{\frac{x}{x-1}},$ 36) $\sqrt[3]{2}$, $\sqrt[3]{2}$, $\sqrt[3]{3}$, $\sqrt[3]{2}$, \sqrt

36)
$${}^{\circ}Z$$
, ${}^{37}> {}^{\circ}()! {}^{\circ} {}^{38}),$ ${}^{-}$ ${}^{39)}\frac{1}{{}^{-}}$, ${}^{\circ}{}^{1}A^2 - 1$

43)
$$\frac{-1+\sqrt{4x-3}}{=-}$$
, 44) $\lg_2 x$, 45) $-\lg_4 x$,

46)
$$/ = \overline{\lg_2}$$
; 47) $\frac{1}{\lg_{Q-x}}$, 48) $\lg_{10}x$, 49) $\lg_{10} \sim -\frac{x}{\sqrt{x}}$

54)
$$10*'+1$$
, 55) $(2*-]^{\wedge}$ 56) $2^{\frac{x}{1-x}}$, 57)


$$= g(x) \qquad \qquad y = g(x) \qquad \qquad 2 \sim 0,$$

n o

$$= 1,2; \lg_{10} a = 0,0792.$$

x	0,0	0,1	0,2	0,3	0,4	0,5	 1,0
fix)	1,06	1,10	1,12	1,15	1,17	1,18	1,07
(X)	1,12	1,21	1,25	1,32	1,37	1,39	1,14
$\frac{1}{fix}$	0,94	0,91	0,8	0,87	0,85	0,85	0,93
lgio/W	0,025	0. 41	0,049	0,(61	0,068	0,072	0,029
fix) lgioT	0,083	0,087	0,088	0,091	0,092	0,093	0,084
	1,21	1,22	1.23	1,23	1,24	1,24	 1,21

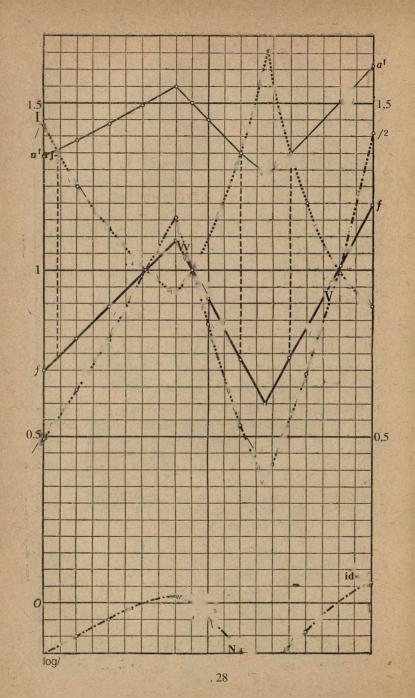
0.0792	0,0792	0,0792	
601	Oil	211	
79	79	79	
4	8	8	и т. п.
0.083	0,087	1	
		0,088	

X	0,0	0,1	0,2	0,3	0,4	0,5	101	1,0
fix)	0,70	0,80	0,89	0,99	1,08	0,91		1,19
()	0,49	0,64	0,78	0,97	1,16	0,83		1,41
$\frac{1}{\text{fix}}$	1,43	1,25	1,12	1,01	0,93	1,10		0,84
Igio fix)	-0,155	-0,097	-0,051	-0,004	0,033	-0,041		0,076
fix) lgio«	0,123	0,141	0,156	0,174	0,190	0,160		0,209
a f(*)	1,33	1,38	1,43	1,49	1,55	1,45		1,62

1. $\mathbf{y} \sim f(x)$

); 1 = 20

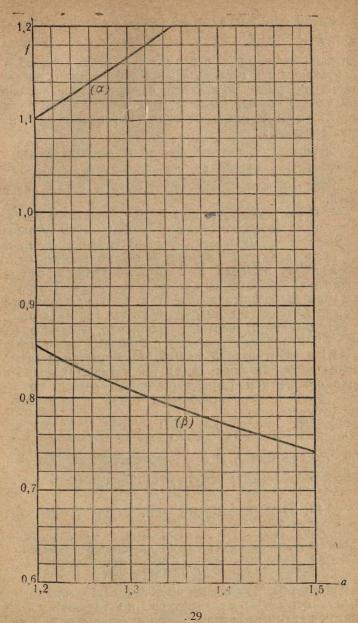
 $-0,25<_{-}<1,68.$


0,60 </<1,20

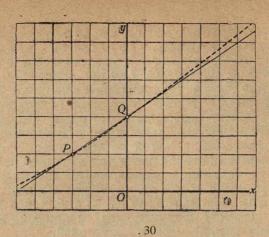
$$0.36 < /^2 < 1.44,$$
 [2]

$$0.83 < -\frac{1}{y} < 1.67,$$
 [3]

$$-0.22 < \lg_{10}/< 0.08;$$
 [4]


&

$$y=f, y=f, y=j^{1} = \lg_{10}f$$


$$= f, f$$

29 Oaf, 27 -0,85: 28 =1,5. 0.74. af 29. 3. f = ,mx - (>0), $(f^2)'' = [(nix - j -)^2]' = 2/^2 > 0,$ $(f_{i} \uparrow - I_{j} m_{x} \overline{x} + n_{f} \wedge I_{j})$ $(\operatorname{Igm} f)'' = [\operatorname{'gn} (*+tl)]'' = -(^- \mu^m) - < 0,$ $(af)'' = [+ '-' \sim +'' ?_e^1 g^2 > 0.$


```
/2, \frac{1}{j}, \lg_{10}/ /,
                               /2, j^{-1} /
                               1g<sub>10</sub>/
    4.
          ), (
                                  1-2
                                                                   ).
                                 . 29)
 \frac{-}{=1,1}1,2
                                   /= 0,8,
( ),
                                                              ();
= 1,4
0,8<_ <1,2,
                         \lg_{10} f < f, f^2, \frac{1}{f} < a^f,
                          /, /2 1,
                                                                        /= 1,
                                                           \lg_{10}/ af.
         13.
```

? Q [1] 11, Q,), 30 (-3,2) Q(0,4), 11 (I). 1 119

U = -- . (-3)

$$=4, = \S;$$

[1] :

$$=4+\quad \frac{2}{3}\,x,$$

2 -— -j- 12 = 0.

[2] (

(3,6),

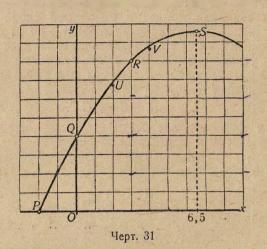
[2]

(6,8)

F

$$V=A+Bx+Cx^2. [3]$$

$$= (2 + 3 + 1) = \frac{if}{-1} \left(\frac{1}{2} + 2 \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$$


 $=x^2,$ [51

$$= \int_{-\infty}^{\infty} +2^{-\frac{1}{2}}$$
 [6]

$$= \frac{(}{(*+2)^{7+}} \frac{2}{7+} \frac{4}{4^{2}} \frac{-2}{2}$$
 [7]

 $= \frac{1}{3} \left(\left(x^{\text{BV}} + 2^{-} \right) + \frac{4}{4} - \frac{2}{4} \right) = + \text{".[8]}$ [5],

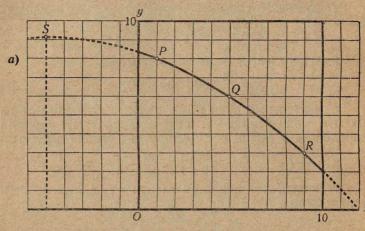
[3]

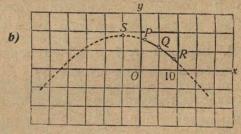
, Q R. [3],

[3]. -2 < x < 9,

, Q R, ") ,

{--2,0}, Q (0, 4), R (3, 8).


$$= \frac{2(289 - (x - \frac{13}{2}))}{15(4 - (x - \frac{13}{2}))} = \frac{289}{30} - \frac{2}{15}(x - \frac{13}{2}),$$


$$x = ii_{2}$$
, $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$; $= -6,50$;

$$X = 2$$
 : $-\frac{104}{15} - 6.93$; = 4 - [LJ V)

$$0 < ! < 10, 0 < < 10$$

$$-4 - -! - 2;$$

Черт. 32

$$\begin{cases}
+ & + & = 8, \\
+ & 5 & + 25 & = 6, \\
U + 9B + 81C = 3,
\end{cases}$$

$$\begin{vmatrix}
4 & + 24 & = -2, \\
4 & + 56 & = -3,
\end{cases}$$

$$32 & = -1,$$

$$C = -\frac{1}{32},$$

$$A = \frac{.267}{.32},$$

N lg D

2 0,3010 0,1761 0,1761 4 0,6021 0,1250

3,4.

= -\-

(3; 0,4771) Q (4; 0,6021),

>=0,1021+0,1250*,

*=3,4 : (= lg 3,4) = 0,5271.

- + *

{2; 0,3010), Q(3; 0,4771) R{4; 0,6021).

= -0.2048 + 0.3041* - 0.0256*2.

* = 3.4

(= 1g 3,4) = 0,5315.

: $\lg 3.4 = 0.53148$.

14.

14

 $= 3 (1 + \cos^9 0) + 2 \cos 9 + \sin^2 6 - 2 \sin^3 30 \cos^4 - 6$ = ...

$$0 = 40^{\circ} \qquad 30 = 120^{\circ} \qquad \frac{9}{2} = 20^{\circ}$$

$$\sin 0 = 0.643 \qquad \sin 30 = 0.866$$

$$\cos 0 = 0.766 \qquad \sin^{2} 30 = 0.750 \qquad 0$$

$$\sin^{*} 0 = 0.414$$

$$2\cos 0 = 1.532 \qquad 0$$

$$\cos^{2} 0 = 0.586$$

$$\cos^{4} 0 = 0.342$$

$$\cos 8 0 = 0.118$$

$$\cos^{9} 0 = 0.091$$

$$1 + \cos^{9} 0 = 1.091$$

$$3(1 + \cos^{9} 0) = 3.273$$

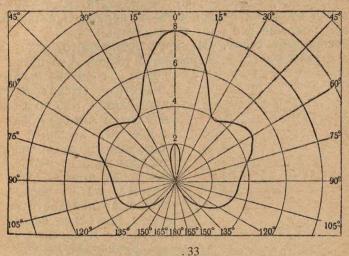
$$\frac{9}{2} = 20^{\circ}$$

$$\cos^{8} \frac{9}{2} = 20^{\circ}$$

$$\cos^{8} \frac{1}{2} = 0.940$$

$$\cos^{8} \frac{1}{2} = 0.780$$

$$\sin^{2} 30 \cos^{4} \frac{1}{2} = 0.585$$


$$3(1 + \cos^9 6) + 2\cos G + \sin^2 0 = 5{,}219,$$

$$=3(1 + \cos^9 6) + 2\cos 0 + \sin^2 0 - 2\sin^2 30\cos^4 -g -$$

$$= 4{,}049.$$

1. 2. 180° 5° 36 360° 180° 180° (5° 175°, 10° 170° 36 3. 4:1); (, ——, = 6 6 = 0°, 90°, 45°, 15°, 30°, 60°, 75° — $(0 = 5^{\circ}, 10^{\circ}, 20^{\circ}, 25^{\circ}$. .) 4.

(. 33).

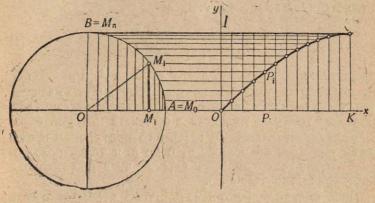

```
0=0°, 5°, 10°
... 180°
... 8,0 7,8 7,0 6,3 5,3 4,5 4,0 3,9 4,1 4,4 4,6 4,8
4.8 4,6 4,4 4,1 3,8 3,6 3,5 3,4 3,4 3,3 3,1 3,0.
2.8 2,5 2,0 1,9 1,6 1,2 0,6 0,1—0,5—1 —1,4—2,0,
>160°,

( ), , , , "

15.
```

y = s i n x [1]

129


, ,);

(,, "): 34) (,, YB OY Черт. 34 \overrightarrow{AM} X =xjAM (): $(X = \cos , Y = \sin .$ [2] $tg \times t \frac{\sin :}{\cos :}$

X Y

X

(. 35), [1].

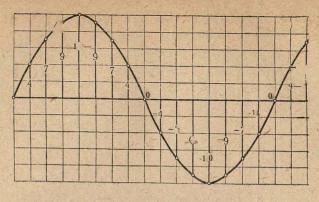
Черт. 35

9*

1, [3] $_y=\sin x=\sin \pounds_{i}$, [4] (,, [3] [4]. (' = 0, 1, 2, 3,..., %),35

i	in II	$= \sin x = \sin -\mathbf{g} $			
0	0	0			
1	- =22 30'	0,383 0,4			
2	ft =45°	0,707 — 0,7			
3	3 = 67° 30'	0,924 — 0,9			
4	TZ - 90»	1,000= 1,0			

0, 4, 7, 9, 10,


047910 4321.

0, 4, 7, 9, 10, 9, 7, 4, 0,-4, —7,—9,-10,-9,-7,-4,0, 4, 7, 9, 10, 9,...,

(.36).

—sin .

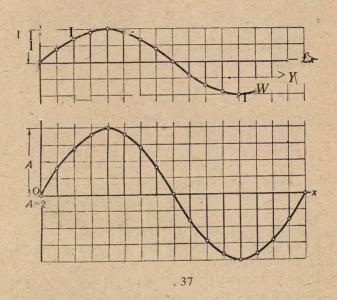
 $-A \sin (-)$ [5]

. 36

t, : [5]

 $= \sin/(t-t)$

().


-1, -1, = 0: $= \sin t$

. 21 [I]).

I.
$$[5]$$
 = 1, = 0,

> 0. [1] [6], [6] (6]

[1] (.37,

[1]
$$(6)$$
 (5) (7)

[6]

0,4; 0,7; 0,9; 1,0

[5]— -1, = 0, II. $= \sin$, [7] > 0. [1] [7], [7] [1], =2). . 38, II Черт. 38 [1] [7] <4) > 1) [1] [7J [7] [5] : $v = A \sin(\frac{2\pi}{\omega})$. [5] [7J, jp=sin

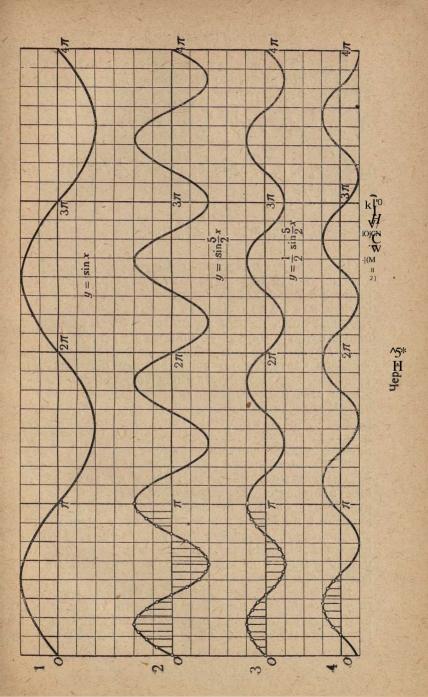
?
$$\frac{k\pi}{m}$$
 . $\frac{k\pi}{m}$. $\frac{k\pi}{m}$. $\frac{k\pi}{m}$. $\frac{k\pi}{m}$. $\frac{3\pi}{m}$. $\frac{2k\pi}{m}$. $\frac{\pi}{m}$. $\frac{\pi$

11.

$$\sin(-) = -\sin(-)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$(1)_y = \sin x,$$
 $(2)_y = \sin x,$


$$(2) = \sin$$

$$(3) - A \sin$$

(3)
$$-A \sin$$
 , (4) = $A \sin$ ($-$).

$$\frac{1}{2} , = \frac{5}{2}, c = \frac{\pi}{6}$$

$$y = \frac{1}{2} \sin \frac{5}{2} \left(x - \frac{\pi}{6} \right)$$

1.

= 2, 3, 4, Y'= 2, 3, 4, 5, 6, 8;

-2, 3, 4, 5, 6, 8;

-3, 1, •,

3

 $c = \pm \frac{1}{3}, \pm \frac{2}{3}\pi, \pm \frac{7}{6}, \pm \frac{5}{6}\pi$

; ; =8 -; 1=2 , <1

3.

"("("","""。"。 "

140

6. cos --j-i sin : $v(x) = b \sin^3,$ $=1, \quad --\frac{\pi}{2},$ acosx: A = b, = 1, = 0, $b \sin$. $f(x) = u() - \{-v() = a \cos + b \sin \}$ $a \cos : \# \sin$ $a\cos$; -f- $b\sin$.

y^rqiyi

$$(\sim \sim -\frac{a}{) + ('7^{-}f'P''')} = \frac{b}{|-|-|}$$
 [2]

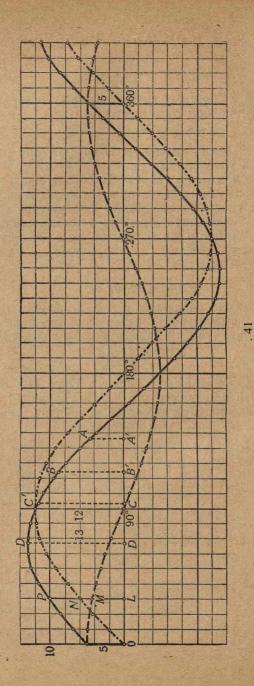
; , ,

$$\begin{cases} \sin = -\frac{a}{\sqrt{\alpha - \sqrt{-}}} *, \\ \cos = -\frac{a}{\sqrt{-} * + 2} \end{cases}$$
 [3]

[2]

$$X^2 - \{-X^* = \},$$

AM,


(1,0). [3],

[3].

[1], ":

 $a \cos - b \sin x = j/a^2 - f - b^2 (-\sin c \cos ; -f - \csc \sin x) ==$ $= j/a^2 - j - b^2 (\sin x \cos c - \cos x \sin c) =$ $= a^{2} - f - b^{2} \sin(x - c).$ $a \cos x - f - b \sin x$ $A \sin(-)$ $A = \overline{Y^* + V^r} > 0$ [4] b [3]. [4] 16 10°), $() = a \cos x$ $v(x) = b \sin x$ 10°) 1/2-[-62* =5, 6=1210° 20° 00 180°

$\frac{\partial \cos +}{\partial \sin x}$	5,00	6,94	8,78	10,35	11,53	12,44	 -5,00
sin	0,00	2,04	4,08	6,CO	7,68	9,24	0,00
sin	0,00	0,17	0,34	0,50	0,64	0,77	0,00
a cos	5,00	4,SO	4,70	4,35	3,85	3,20	 -5,00
COS X	1,00	0,98	0,94	0,87	0,77	0,64	 1,00

1.

," ,"

2.

 $_{2}\sin(-_{2})$ -j- $_{2}\sin(-_{2})$ $A \sin(-_{2})$

 $A_{t} \sin (-) - 2 \sin (-) =$ $= ^{1}(\sin x \cos - \cos \sin) - =$ $- _{2}(\sin \cos _{2} - \cos \sin _{2}) =$

= $-(Aj \sin_{1}, -f_{2} \sin_{2}) \cos_{2} - -$ - $-(\cos_{1} - c \cos_{2}) \sin_{1} = a \cos_{1} - b \sin_{1}$,

= - (\sin - - $_2 \sin$ $_2$), $b = _2 \cos$ -j- $_2 \cos$ $_2$.

3. b · 16

 $(5^2 - (-12^2 = 13^2),$

4. : *LN*

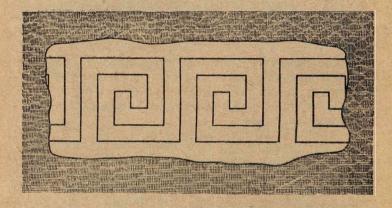
(. 41), MP = LM; , *D'D* (...41) 4:7:9:10. 5. : 1) ; 2)). 6. (42 - 43)), 3-4 $c-x-\frac{3}{2}\pi$ 7. bsinx a cosx . 42

< (0),

147

17.

 $/(\ ?:+\ ")-/(\ ") \bullet$ $\vdots \qquad \qquad y = f(x) \setminus$ $|\ "(\ -1-3(\ ,\), ... \qquad , \qquad (\ -2\ ,\), ... \qquad ;$ $\vdots \qquad \qquad , \qquad \qquad , \qquad \qquad , \qquad \qquad ,$ $\vdots \qquad \qquad , \qquad \qquad , \qquad \qquad , \qquad ,$


•••=/(-*: -2 >) = /(-) = /() = /(+) = /(+2)= ...

f(x)

: /(2+>) = / (+); /(•* + 3(i>)=/(x+2);... : /()=/(—) .

10*

43;

. 43

/(), ..., — ',..., —2 >,—(, , , , 2to, >,..., ^>0)

",

$$/() = \sin :$$
= 2 :
 $\sin (-)-2) = \sin :$
:
 $AJ (.34),$
2«,

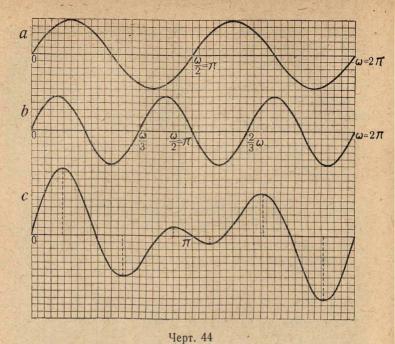
$$f(x) = A \sin\left(\frac{2\pi}{\omega}\right)$$

$$/(* + ") = \sin \sim \left[\frac{2\pi}{6} * - \mathbb{R}\right) \sim J =$$

$$= A \sin \frac{2\pi}{6} \left[(-) - (- to] = A \sin ^2 \frac{\pi}{6} + 2 = \pi\right]$$

$$= ^3\sin - ^2 \frac{\pi}{6} X - C) = f(x).$$

 $\sin 2 \cos 2$


; sin $\cos \frac{2\pi}{2}$; $\sin \cos \frac{2\pi}{2}$

 $\frac{2}{n}$. $\sin^{x} \cos^{2} ?^{x}$

16.

$$-$$
, [
 $A \sin - \frac{2\pi}{(} -)$, . § 16,

 $() = \sin(2\sim) \int_{\omega}^{\pi} \frac{2\pi x}{\omega} () - \sin(-1) \left(3 \cdot \frac{2\pi x}{\omega}\right).$

 $-\frac{3}{3}$ (44,).

..., , , , 2 , 3(,...;

$$f(x) = \sin\left(2^{2} - \int_{0}^{\pi x} f \sin\left(\frac{2\pi x}{\omega}\right)$$
 [2]

 $, \quad w = 2ir;$

 $f() = \sin 2 - f - \sin 2$ [3]

```
4X4 = 16
                                                                [3]
                                                                                   44)
          48
sin
                                   4
                                               , 6
                 sin 2:
                                                                              7° 30'.
                                  97 '00
92 7
           0 0
                    50
7
                                            97
33
               26
38
                                                 82
                                                       71
38
                                                           50 26
71 -92
                                                                    0
- 100 - 92
                            ,00
                   12 j 63 11 7 U9 17
          0 | 64
                                                87
                                                    " (
                                      sin 2
                                    /( ),
44 .
[3],
                       , 11
  =0
                                             sinx);
                                                                     (=0)
     1
```

(

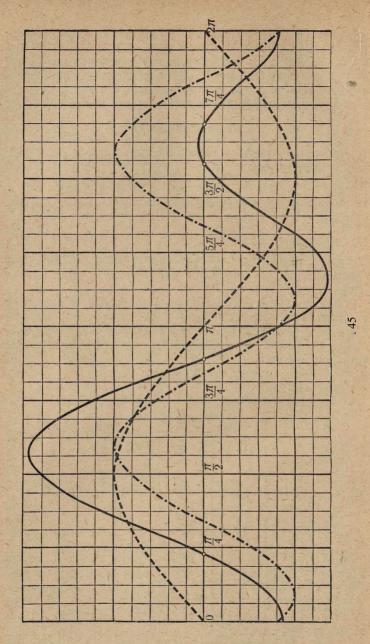
, 0°, 30°, 60°, 90°

 $\sin 2 - [-\sin = 0,$ sin 2 -|-sin $/(x) = \sin 2x - |-\sin 3x = 2\sin 4^{-\cos -}.$ [4] /() 11: $\sin 2x$ -J- $\sin 3x = 0$ $\sin_{-2}^{5} = 0$ [5] $\frac{2}{2}$ os 0. [6] [5] $\frac{5}{2}x = £ , \quad (k - \frac{2}{5}k\pi),$ $\frac{X}{\sim}_1 + k\pi$, = +2kn (k-). , 0< <2 - 1, [5] $Xj = \frac{1}{2} =$

152

152

[6] —


. 44).

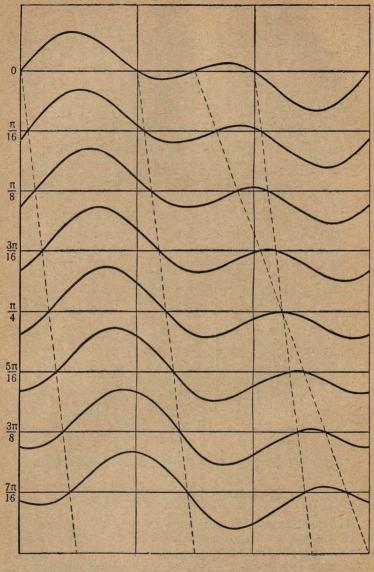
17

$$() = A \sin (-a), v() = \sin (-b).$$

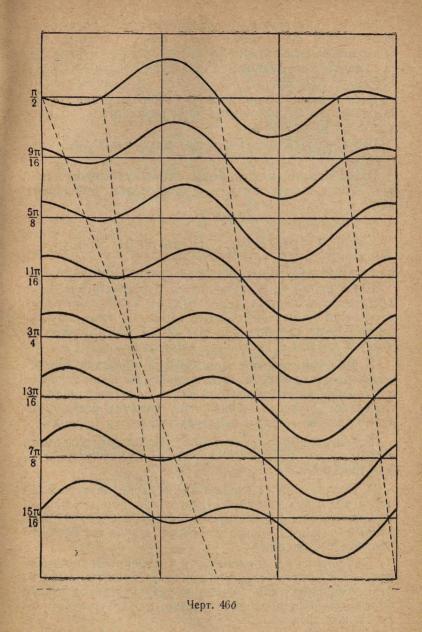
 $() = \sin ;, v(x) = \sin 2 (- ^{\pi})$

x	0°	11° 15'	22°30'	33°45'	45		
-) r		—97°30'	-75°	52°30			15°
sin	0	19	38	56	71	83	92
sin 2 (~)	-87	-99	-97	-79	-50	-13	26
fix)	h- 1	-80	-59	-23	21	70	118

						135°		
π >(-)		60°		105°		150°		
sin :	98	100	98	92	83	71	-56	
sin 2 (*—J)	61	87	99	97	79	50	13	
fix)	159	187	197	189	162	121	69	


$$sinx-f-sin2\left(x-\frac{\pi}{3}\right)=0.$$

$$sin -j-sin2\left(x-\frac{\pi}{3}\right)=2 sin a\left(\frac{3}{2} - \frac{\pi}{3}\right) cOS\left(\frac{x}{2} - \frac{\pi}{3}\right).$$
1) $sin\left(\frac{3}{2} - -\frac{\pi}{8}\right)=0,$ | 2) $cos(y-\frac{x}{j})=0,$ | 3) $cos(y-\frac{x}{j})=0,$ | 4) $cos(y-\frac{x}{j})=0,$ | 5) $cos(y-\frac{x}{j})=0,$ | 6) $cos(y-\frac{x}{j})=0,$ | 6) $cos(y-\frac{x}{j})=0,$ | 7) $cos(y-\frac{x}{j})$


1.

$$f(x) = 0$$

$$= = 1.$$

Черт. 46а

15?

```
= 1, = 2.
2*: 32, . .11° 15'.
        =16
                                            1=5
                     - 0
                                          b
                     b=k\frac{\pi}{16},
т. е.
      0°; 11° 15′; 22° 30′;...
                                    34 °45';
                                    ( . . .46).
              16
                          = ,
( )' = — sin :;
u(x) = s \mid nx
        16-
   2.
               = 1, «=3 ==2, =3,
          48
   3.
                                                   16
          5).
          32
                    48
   5.
```

).

18.

[t-)(>-0). $= \sin$ [1] $\sin (t-)$ **—**[- 1, (^ 1, [1] $x=\sin t$. [2] 47. t= \frac{n}{4} \frac{1}{89} \frac{1}{-} -0 -

. 47

```
t=0
                                            5,
                                                                                = \ \
                                                                  ^{0}\frac{\pi}{2}
                                                         ^{\wedge}0, \frac{\pi}{8}, \left(\frac{\pi}{8}, ^{\wedge}, \left(\frac{\pi}{4}, \frac{3}{8^{\vee}}\right), \right)
("<sup>3</sup> , #2')» >
                                                                 . 133,
                              t - \uparrow, \frac{\pi}{4}, -jj
                                                                                     : 0,4; 0,7; 0,9.
                                                                5
                                                                          05,
                                                                                                               S'
                                 [2]
          ,
^ = -)-
         I.

fx=Asinm(*-), 

y=sin(t-b).

                          ).
                                          jx = \sin m (t - 1),
k = \sin m (t - 1),
            [3]:
                                              [4]
                                                                                                   [3].
160
```

6.

$$t'=t-b,$$

t=b.

$$\begin{cases} x = \sin (t - t), \\ (y = sinnt + t), \end{cases}$$
 (5)

I •*!<!, «1,

Q,

<u>+1</u>, j>=+1.

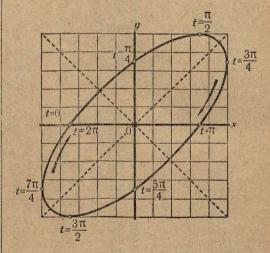
$$\begin{array}{c} \underbrace{(I)}_{2} \\ \hline \\ 2 \\ \hline \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} = \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c}$$

n IZ

-1 = 1;

$$\begin{array}{rcl}
1 &= \sin(t - a), \\
1 &= \sin t.
\end{array}$$
[6]

(. . 48). I. a = 0.


$$(= \sin t, = \sin t)$$
 [7]

: (1,1)

(-1, -1),11. - [6]

$$(= -\sin t, = \sin t.$$
 [8]

1/1	13/1
1 a=0	$\prod a = \pi$
$V a = \frac{\pi}{4}$	$Vii \ a = \frac{5\pi}{4}$
4	4
$\lim a = \frac{\pi}{2}$	$ V = \frac{3\pi}{2}$
$\frac{111 \cdot a - \frac{1}{2}}{1}$	$1 \lor a = \frac{1}{2}$
37	
$V1 \ \alpha = \frac{3\pi}{4}$	VIII $a = \frac{7\pi}{4}$

. 49

$$(-1, 1) \quad (1, -1), \qquad --$$

$$= -\frac{3}{2} \quad [6]$$

$$= -\frac{3}{2} \quad [7]$$

$$= -\frac{3}{2} \quad [7]$$

$$= -\frac{3}{2} \quad [7]$$

$$= -\frac{1}{2} \quad [7]$$

$$= -\frac{3}{2} \quad [7]$$

$$= -\frac{1}{2} \quad [7]$$

$$= -\frac{3}{2} \quad [7]$$

(

. 49).

163

0

7

~2

(

[11],

$$3 2+$$
 $*=\frac{1}{2}.$ [12]

VI. $= \frac{3}{4}$, VII. $= \frac{5}{4}$ -jit, VIII. $a = -\frac{7}{4}iz$.

[3]):

$$\begin{cases}
= \cos , \\
y = \sin St^{I}.
\end{cases}$$
[13]

,),

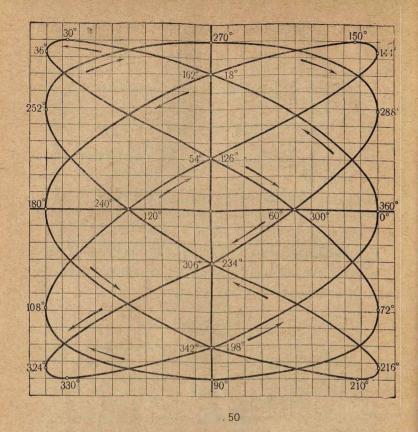
 $\sin 31 = 3$

$$3t = , t = ^{\wedge}.$$

2) 3)
$$\sin 3^{4} = -\{-1 \ \sin 3 \ \pounds = -1,$$
 $= -|+2 \ ,$ $t = \frac{\pi}{6} + \frac{2}{3} k\pi$ $3^{4} = jn \frac{3}{2} 2kn$, $t = Z - \frac{1}{2} kn$.

 $\frac{k\pi}{6}$

t '- · $\overline{10}$


g-10'

1	t	0°		60°	90°	12	150°	360°
	X	100	-87	50	0	—50	87	100
1		0	1	0	-1	0	1	0

1	t	0°	18°	36°	54°	72°	90°	360°
	X	1	0	-1	0	1	0	1
		0	81	95	31	-59	-100	0

t (

();

t,

(.50)

22.

18

 $(=\sin m(t-),$ $= \sin(t b).$ W<1, [|<1.

$$\begin{cases}
= \cos , \\
y = \sin 3t. \\
50
\end{cases}$$
. 165.)

t.

1.

18

50.

1)
$$\begin{cases} x = \sin(t-a), \\ y = \sin t, \end{cases}$$

$$= \frac{2}{5}, \frac{5}{6}, \frac{5}{6}, \frac{7}{8}, \frac{5}{8}, \frac{7}{8}, \frac{5}{8}, \frac{7}{12}, \frac{5}{12}, \frac{7}{12}, \frac{11}{12}, \frac{$$

$$a = 15^{\circ}; 22\frac{1}{2}^{\circ}; 30^{\circ}; 60^{\circ}; 67\frac{1}{2}^{\circ}; 75^{\circ};$$

 $105^{\circ}; 112\frac{1}{2}^{\circ}; 120^{\circ}; 157\frac{1}{2}^{\circ}; 165^{\circ};$

2)
$$lx = \sin 2(t - a)$$
, $y = \sin t$,

$$a = \frac{3}{4}\pi; \frac{\pi}{3}; \frac{2}{3}\pi; \frac{\pi}{6}; \frac{5}{6}\pi$$
[3c=sin 3 [t—a),
[y=sin t,

$$-\frac{7C}{a_{\sim \sim}} \frac{\pi}{2}, \frac{3}{4}, \frac{2}{T^{1}}, \frac{2}{9^{\frac{1}{2}}, 2^{4}}$$

3) [A: = $\sin mt$, $jx = \sin mt$, $(x = \cos mt, jx = \cos mt)$, $y = \sin nt$, $y = \cos nt$, $y = \sin nt$, $y = \cos nt$

a)
$$m=3$$
, b) $m=4$, $m=5$ $n=3$, c) $n=2$

2.

И

1)

150°; 300°, 450°, 600° . . 1800°.

),

2)

Q

3) t).0° 360°) 19. (>1) $ch_n x =$ [1] . 16 17 [II]. . 9 [I] . 9 [I], , 20 [II]. 169

$$^{ch}<.* = 7(*' + £*),=$$

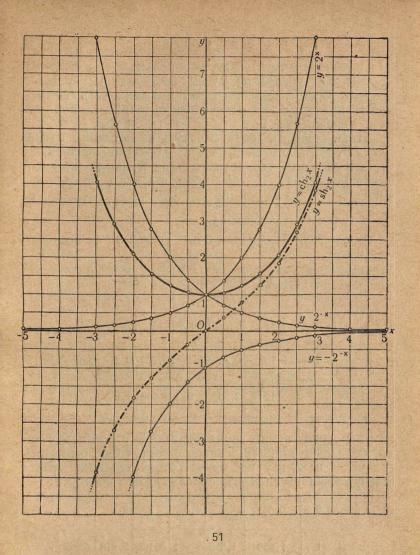
2:
$$ch_2x = \frac{2}{2} + \frac{2}{2}$$
 [2]

$$=2$$
 $=2\sim$.

,,

$$=2-12-$$
;

$$y = ch_2 x$$
,


2, .

- 1;

$$2^{3}$$
 = $\sqrt{2}$ ~ 1,41,

$$\frac{3}{2}$$
 2² = 2/2 - 2,82;

$$^{1}_{2^{-}} = JL_{/2^{-}} - 0.70; \qquad ^{9}2^{\frac{1}{2^{-}}} {}^{1} \frac{1}{2^{-}} - 0.35; \dots$$

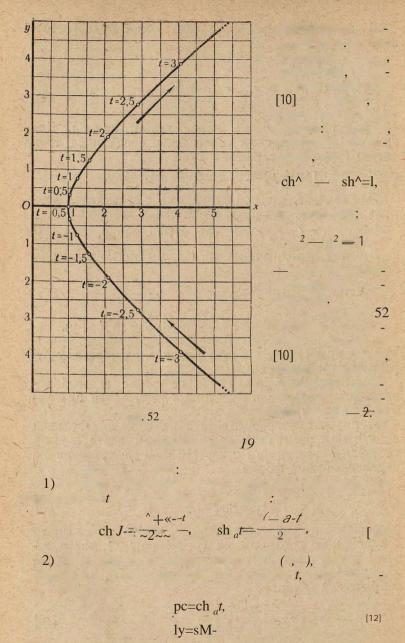
, - 0

"

-	X	0	0,5	1	1.5	2	2,5	3	
	2	1	1,414	2	2,828	4	5,656	8	
	2~	1	0,707	0,500	0,354	2,250	0,177	0,125	
2	+ 2~~	2	2,121	2,500	3,182	4,250	5,833	8,125	

$$\operatorname{sh}_{a} x = \frac{a^{x} - \hat{a}^{-x}}{2} \quad (\ll > !) \bullet$$
 [3]

 $sh_2x = \pm \frac{9}{-} - \frac{7}{2}$ = 2 $= -2 \sim .$ $= \frac{1}{2} \sim .$ $= -2 \sim .$


	X	0	0,5	1	1,5	2	2,5	3	
	2	1	1,414	2	2,828	4	5,656	8	
	2	1	0,707	0,500	0,354	0,250	0,177	0,125	
2	2 — 2~~	0	0,707	1,500	2,474	3,750	5,479	7,875	
	sh ₂ x	0	0,354	0,750	1,237	1,875	2,740	3,938	i a

(,, cosa sin 1.) ch_aA (sh_aA 2 cos(-a) = cos : (sin (-) = -sincosa:), sin). [1] $ch_a(-A)=ch_eA$. [3] SM- \cos^2 -\- \sin^2 = 1. [5]

[6]

174

1 * Toch2A-sh2A=l.a

-a2,09.

lgio«=0,3202.

t	0	0,5	1	1,5	2	2,5	
< lgio«	0,0000	0,1601	0,3202	0,4803	0,6403	0,8005	
at	1,00	1,45	2,09	3,04	4,37	6,32	•
— Hgi ₀ a	0,0000	1,8399	1,6798	1,5197	1,3596	, 1995	
a⊶t	1,00	0,69	0,48	0,33	0,23	0,16	.,,
$a^1 + a - t$	2,00	2,14	2,57	3,38	4,60	6,48	
$x = \operatorname{ch}_{a} t$	1,00	1,07	1,28	1,68	2,30	3,24	
at - a - 1	0,00	0,76	1,61	2,71	4,14	6,16	
-s M	0,00	0,38	0,80	1,35	2,07	3,08	

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^* = 2,71828...$$
 [13]

 $ch_{\sigma}x$

$$g_e x = Igx.$$

sh_cx,

ch, = ch =
$$\frac{e^{x}}{2}, \frac{1}{2}, \frac{e^{-x}}{2},$$

sh, x = shx = $\frac{e^{x} - e^{-x}}{2}$.

2.

$$< COS X — Che; X,
 $> sin := - slv$$$

[14]

$$\begin{cases} ch = \cos(ix), \\ sh x = -i \sin(ix). \end{cases}$$
 [15]

3.

4. , 2< <3.), [12]

20.

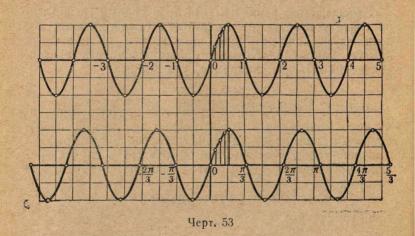
 $= \sin$ [1] = 3,14...

 $[1], \quad , \quad = \sin \quad . \quad [2]$

 $[2] \qquad \qquad 3 \qquad \qquad ,$ = ku (k -),

 $x = k \frac{\pi}{3} \wedge \setminus, 05k,$

179


[1]

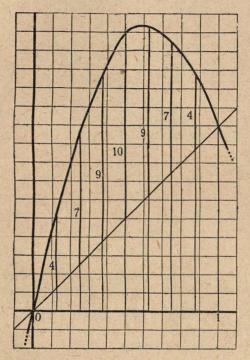
-ku(k-), x=/2j

,, 11 12*

(. 15):
$$= \frac{2}{3}$$

$$\omega = \frac{2}{3}\pi;$$
= 2.
53
[1] [2].

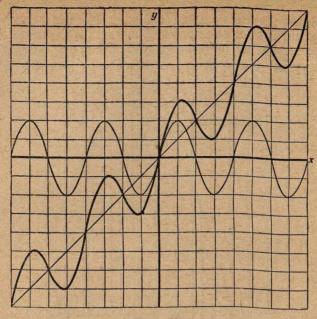
(-f- 2) -f- sin (+ 2) = (-j- 2) -f- sin (-f- 2it) = = $(x \sin x)$ "fTM 2


*		sin *	* -f- sin
0	0	0	0
1 2	2	0	1 2
1 1 2 3 2 1 4	2 3 - *	0 1 -1 1 7f~0,71	$\frac{3}{2} \approx 10.5$ $4 = 0.5$ -0.96

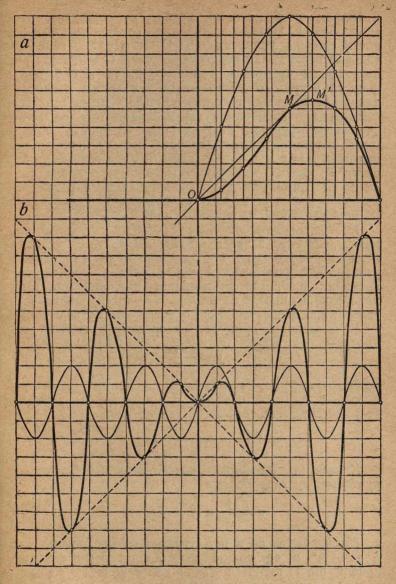
[3]

4 0<<*<4 > 1 -

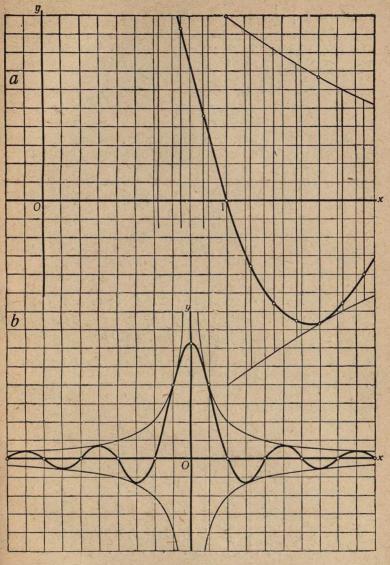
[3] [4] [3]


2 2,

Черт. 54а


$$\left| \begin{array}{c} A \\ \sin T \end{array} \right| < \frac{A}{2} \quad , \left| \begin{array}{c} Cos(-\alpha - f - \eta - f) \\ \cos(-\alpha - f - \eta - f) \end{array} \right| \leqslant 1,$$

$$\begin{vmatrix} 2 \sin \cos (+ 2 - 3j - 1) \\ = 2 - \sin \left(\frac{h}{2} \right) \cdot \cos \left(x + \frac{A}{2} \right) \cdot \cot A = A.$$


Черт. 54b

-	sin			[5]
	$X \mid$;	sin	: sin
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 8	0	0,0 0,4	0,00 0,05
$= 0.83$: $= 0.83 \cdot \sin 0.83 \sim$	1 4 3	7"	0,7	0,18
' ~ 0,83'0,51 -0,42.	8	871	0,9	0,34
4	1/2	~7~	1,0	0,50

Черт. 55

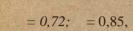
```
55,
                                           [5]: 1)
                                                  x = k \{k - 1\}
x = 0,
x = 0,
x = 0,
                                                 ; 2)
                                  f(x) = x \sin (x); 3)
  sin
                                                   ").
                                                                                       [5],
             ):
                                                , cj
   = \sin
                             \frac{\sin \tau zx}{x} = \sin Ttx \quad \frac{I}{x}
                  [6],
                            56
4
             [6]: 1)
                             x - k \neq k -
                                                                            0);
    2)
186
```


Черт. 56

$$x = k - 1 - 2 \left(\frac{1}{2} - \frac{1}{2} \right),$$

$$x = k - 1 - 2 \left(\frac{1}{2} - \frac{1}{2} \right),$$

$$x = k - 1 - 2 \left(\frac{1}{2} - \frac{1}{2} \right),$$


$$x = 0,$$

$$x =$$

 $\sin \pi x$

x

=3,14...

$= 0.72 - (0.85) * \sin $

	lgA	+	x]	gI	3		
Table Of	19-13	W.				138	Sant.

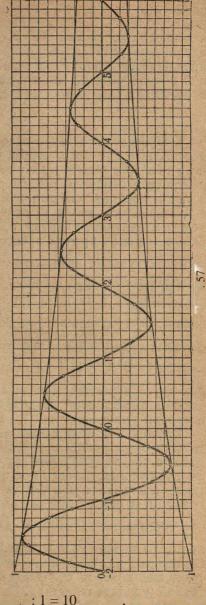
$$\begin{bmatrix} -2 & -0.0015 = 1.9985 \\ -1 & -0.0721 = \overline{1.9279} \end{bmatrix} \begin{bmatrix} 0.996 \\ 0.85 \end{bmatrix}$$

$$0 - 0.1427 = \overline{1.8573} = 0.72$$

$$1 - 0.2133 = 1.7867 0.61$$

$$2 - 0.2839 = \overline{1.7161} = 0.52$$

$$5 - 0.4957 = 1.5043$$
 0.32


$$5 - 0.4957 = 1.5043 \mid 0.32$$

 $6 - 0.5663 = 1.4337 \mid 0.23$

1.

2.

0.7 < < 0.9.

: 1 =8

). sin 16 -2 < < 6. 3. 9 +--(1/4 0,7); 3 (0,4) n + -g0,9). 0,4 0,9 : ,,1)

, () ,,, ? 2) ";
? 3) - ;
? 4) *1
| |=| sin | <^ .

21.

 $f(x) = \sin \text{Ttjc};$

 $f'(x) = AB^{x}$ (lgfi.sin -)- cos), $-4-)==-/-\frac{1}{8}4-<0$, $x = -j-\frac{1}{8}$

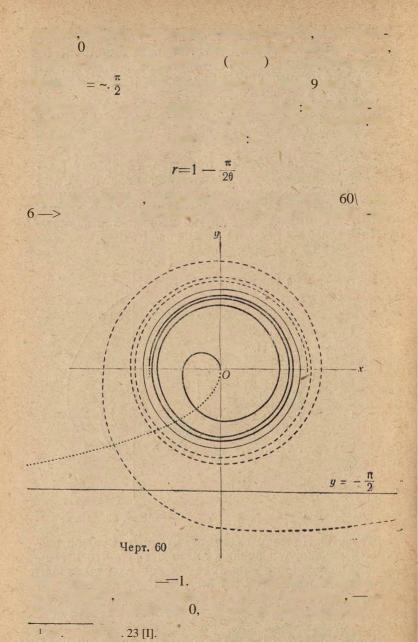
. 58). 0, Черт. 58 $x = r \cos 0,$ $-\sin 0.$ [1] =/(6), [2] 0 [2]. 0 1) 2) (,, [2] 0);

$$r = \frac{\pi}{20}.$$

$$r = \frac{\pi}{20}.$$

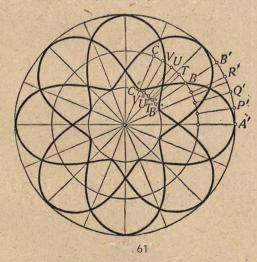
$$r_{4} = \frac{\pi}{20}.$$

$$r_{4} = \frac{\pi}{20}.$$


$$r_{5} = \frac{13}{34} - \frac{2}{3}$$

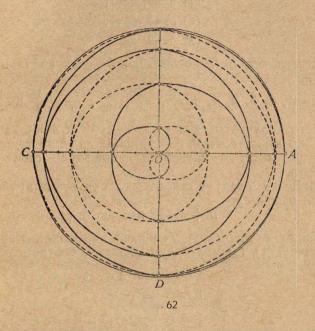
$$r_{7} = \frac{1}{5}...$$

$$r_{7} = \frac{2}{7}...$$


$$r_{7} =$$

 $\sin \frac{\sin 0}{8 = -9}$

9 - 0, 0 < 0,


$$= 2 + \cos \frac{\theta}{3}.$$
0 \quad \cos 0 \quad \text{9} \\
-1 \quad -4-1, \quad \text{1 3.} \quad \text{(.61)}

$$\frac{-1}{0} = 3,$$
 $= 3,$, , , $= 3$

 $\frac{8}{3}\theta = \frac{\pi}{2},$ 16 6 = - -), ', RR', QQ'. 0; 4; 7; 9 10 15), = 3; 6 -yg 6=0 8 -cos -g-. -j-1. 6 = 0 $6=0, \quad 6=4.$ 4, 10, 9, 7, 4 0

(,, 0D, 0D,

$$Q = 16$$
.

$$= - - b \cos$$

$$=-\frac{8}{100}$$
 62 ($=0, -1, m=$

$$\frac{1}{8}$$

1.

$$(1) = , = \$$

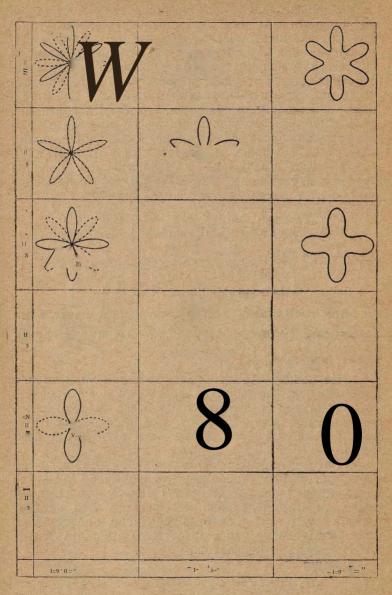
$$(2) = 1, = 1,$$

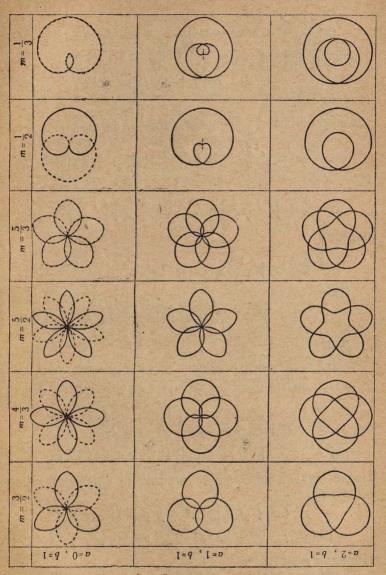
$$(3) = 2, =1$$

$$= 1, 2, ?4, , ?, 2" > \frac{3}{2} > \frac{4}{2} * \frac{5}{2} * \frac{5}{2} \sim ^{1} \frac{1}{3} *$$

$$= 0, b = 1, =1,$$

$$= 12 X 3 = 36$$


-|- &= 10


$$(1), (2), (3),$$
 $1 = 10$
 $1 = 5$
 $1 = 3 - ^-$

+) 36 63 64.

2. ",

8 9. (2), $\begin{cases} x = r \cos \theta, & \begin{cases} dx = \cos \theta \, dr - r \sin \theta \, d\theta, \\ y = r \sin \theta, & \begin{cases} dy = \sin \theta \, dr + r \cos \theta \, d\theta, \end{cases} \end{cases}$ =0. $\begin{cases} dx = \cos dr \, dy \\ dy = \sin 9 \, dr \, dx \sim \end{cases}$ 45 $m=\frac{1}{2}$). 4. 5. 1) $r = \cos 39$. $r - \cos^3 9 - 3\cos 0\sin^2 6$;

2 (
$$-2$$
)² = (1 + cos 0) (4 cos² 0 -2 cos -1)²,
2 ($r-2$)²r⁵ = (r -f- r cos6) (4r² cos²6 $-2r^2$ cosO $-r^2$)²,

$$\frac{2 (j/x^2 + / - 2)* (x^2 +)^2}{2} = (V * "f ^2 + x) [Ax^2 - 2xj/x^2 - (-y^2 - (x^2 + . ^2))^2].$$

$$(*2+ 5 {2 (2+2) +7}^{2} =$$

$$= (8 (2+y^{2}f - 5 (24- *) (2-2) + 16^{-4})^{2}.$$

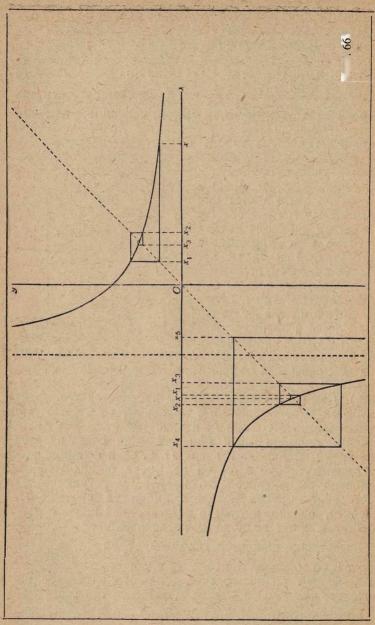
$$14.$$

6.

[2] [3].

22.

;

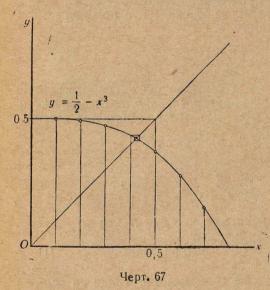

 $Xl = \frac{1}{\sim \sim [+]}$

 $1-2 \frac{1}{1-} = \frac{1}{1+\frac{1}{1+x}},$ $* = \frac{1}{1+^2} = \frac{1}{1+\frac{1}{1+\frac{1}{1-x}}},$

= 2" " "

1=2. X,=Ig **=Ig JCj=lglg X, $x_{s} = lg$ -1 = lglg...lg . (f()1). Xi=f(x)=), X2 = /() = /(/(*)) =), $_3 = /(_2) = /(/(/(_))) = /(_),$ $X_{r} = f(- = |(|(\cdot \cdot . /())...) = ().$

/(") /(). **«-**2, f()(. 65). /()= 11 Xj 0: Q Q Q, Черт. 65 0). 0 2 2), 65. 66 iter -205


 $-=. \frac{1}{1+x}$ $=\frac{-1+1/5^{-}}{2}$. $\frac{1^{5}-1}{2}$, , >—1), $x_{n-1+} = \frac{1}{1+1} = \frac{1}{$,,∼* △=-0,62. [1] : < -1,

^> - 1;

207

[1]

$$x^2 - j - x - 1 =$$
,

 $X, X_1, X_2, \ldots, X_n, \ldots$ Пусть требуется найти положительный корень уравнения

$$x^3 + x - \frac{1}{2} = 0.$$

Придав ему вид

$$x=\frac{1}{2}-x^3,$$

мы видим, что искомый корень есть пересечение кривой

$$y = \frac{1}{2} - x^3$$

с основной биссектрисой y = x.

Намечая график функции $f(x) = \frac{1}{2} - x^3$ (черт. 67), мы

$$(0,4, 0) = 0,4, 0$$

$$= 0,4 = 0,5, 0,4 < 0,5.$$

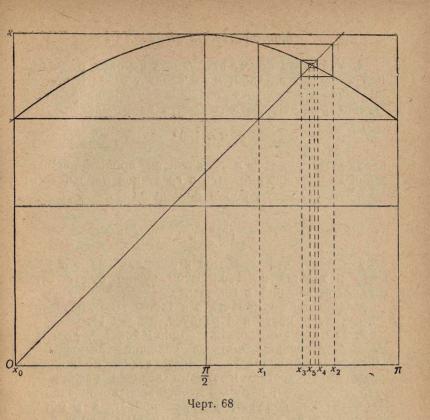
$$Xn + i - \frac{1}{2} - (i = 1, 2, 3, ...), 0$$

$$(i = 1, 2, 3, ...)$$

$$(i = 1, 2, 3, ...)$$

	1	2	3	4	5	6	7	8	
	0,400	0,436	0,417	0,427	0,421	0,425	0,423	0,424	
x_n^3	0,064	, 8	0,073	0,079	0,075	0,077	0,076	0,076	
$\frac{1}{2} - x_n^3$	0,436	0,417	0,427	0,421	0,425	0,423	0,424	0,424	

0,424.


 $x^a + b sin x (= --- \frac{n}{m}, b - - \b < . \).$

 $/(*) = a - f - b \sin$.

x, Xj, %,..., ,.

 $x = a - b \sin^*$

	1	2	3	4	5	6	7
	2	2,634	2,340	2,503	2,421	2,459	2,440
x _n	115°	151°	134°	143°	139°	141°	140°
sin	0,906	0,485	0,719	0,602	0,656	0,629	0,643
0,7 sin	0,634	0,340	0,503	0,421	0,459	0,440	0,450

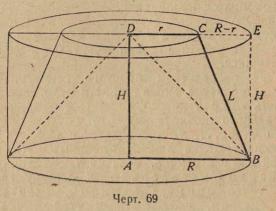
9 10 11 12 8 2,450 2,44651 2,44824 2,44745 2,44792 140°22' 140°ie' 140°13' 140°11' 0,63922 0,63989 0,63787 0,64034 0,44792 0,44824 0,44745 0,44651

1.

— 180°

180 , 2 180.

" 2.


3. - b - -

4.

: 1 = 1068) = 32 4 5, 1) = /() 3) 2. 1

ABCD (. 69)

DC AD,

DC— , AD —

AB - R, DC - , AD = , BC = L.

$$BE = AD = ,$$

$$= DE - DC = -DC = R - ,$$

L

$$L = |/(\frac{1}{1-\epsilon})^2 + \frac{1}{1-\epsilon}$$

5

: S

$$S = n \{R + \} L,$$

```
S = 7r(\#-f r) |/(/?-r)2-f\#^2.
                                                            [1]
             R
R-.
                          \leq r \leq R
                                            ).
                          ABD;
                                        r=R,
                           ABED.
                                          69,
S
          R.
      0
                                                        ),
                  =0,
                                 r-R
R:
                                 69,
                     R:
                                                            [1],
     = 0
                  nR]/R'' - j - 1/2;
                                        2V.RH.
                  Ri/Rt + H^nRH.
                                                             [2]
 1
```

 $R \geqslant W < H_-$

 $\frac{R}{V}$ ~0,57...*R*.

 $S = \frac{1}{2} \cdot \frac{1}{2} \cdot$

$$fir = (+) YiR - rf + H^* - [51]$$

-0,

$$/(0) = 7 /?]/^{-2} + 2;$$

r = R, f(R) = 2nRH.

< ઁ). [2']

 $/(0) = /()^1,$

 $-\frac{R}{\sqrt{3}}$

R

5
R,

0,3#

R

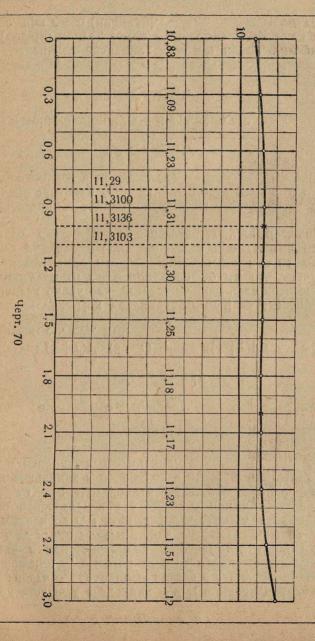
10; 0,1 R-, 0,2/?;

5
S

1

R = 3, -2.

 $5 = /() = (3+) (3-)^3 + 4 = (3-)^7/13 - 6 + r^2$: . . 218.


S $= 0 \\
= 0,9 \\
= 2,1 \\
= 3$ $= 0,9; \\
= 2,1$

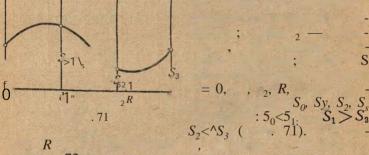
, (. 219),

0,9 < < 1,1,

1,9 < <2,1. 0< <!3

2 V?

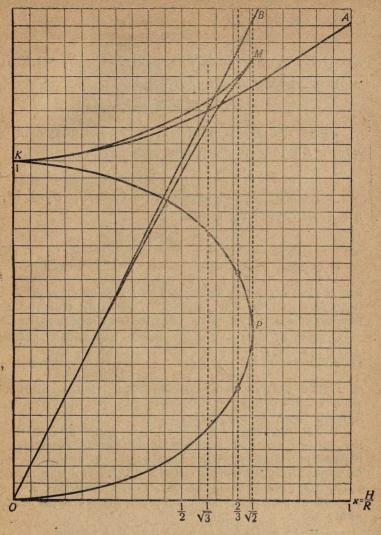
	0		0,3			0,6	0,9	1,2
3+			3,3	3		3,6	3,9	4,2
13—6/- + 2	1	3	11,2	9	9,76		8,41	7,24
/13 — 6 4-2	3,	61	3,3	,36 3,		3,12	2,90	2,69
(3 +)/13-6 -+/-2	10,83		11,0	,09 11,		1,23	11,31	11,30
	- Paring	1000		S/188				
	1,5	5.	1,8	2	,1	2,4	2,7	3,0
3+	4,5	5	4,8	5	,1	5,4	5,7	6,0
13 — 6 + 2	6,2	25	5,44	4,	81	4,32	4,09	4,00
/13— -t- 2	2,5	50	2,33	2,	19	2.08	2,02	2,00
(3 +)/13 - 6 + 2	11,2	25	11,18	11	,17	11,23	11,51	12,00
				1				To the last
	0,8	1	1,1	-	1		1,1	0,9
3+	3,8	4	4,1		4		4,1	3,9
13 — 6 + 2	8,84	8	7,61		8	7.	61	8,41
/13 6 + -2	2,97	2,8	3 2,76	2,	828	4 2,7	7586	2,9000
(3+/-)/13-6+2	11,29	11.3	32	11,3	136	11	,3103	11,3100


).

1.

R

$$R$$
:
 $*=4<$
 $\sim 0*71$
 $\sim 0*71$


0 R

$$\frac{\underline{r} \setminus \underline{r} 2}{R}, \frac{So}{kR^2}, \frac{Sj}{kR^{**}} \longrightarrow \frac{\underline{S2S3}}{\pi R^2}$$

$$R-3, -2, -2$$

 $=-\frac{2}{3}$. 72 (. .)

Черт. 72

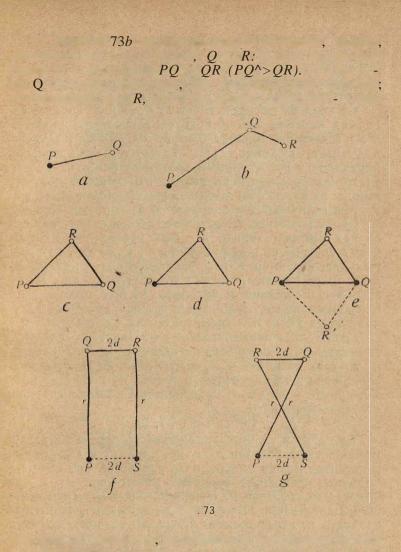
$$\frac{r_1}{R} \sim 0.33; \quad \frac{r_2}{R} \sim 0.67;$$

$$\frac{S_0}{\pi R^2} \sim 1.19; \quad \frac{S_1}{\pi R^2} \sim 1.26; \quad \frac{S_2}{\pi R^2} \sim 1.24; \quad \frac{S_3}{\pi R^2} \sim 1.33,$$

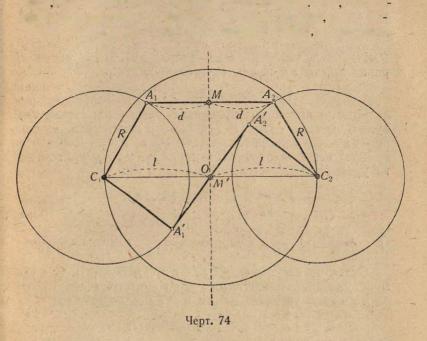
$$(4)^{2}=(3 +)*{(3-)^{2} + 4} =$$

$$= 125 + (r-2)^{2}(V^{2}+4r-2),$$

$$1 <> < 3$$


$$2 + 4 - 2 > 1^{2} + 4 - 1 - 2 = 3 > 0.$$
[7]

[6] [7]


5. 23 ,

24.

73 .


```
(.73d),
                   . Tie:
                               Q, R S,
                        PQ=r, RS \longrightarrow r, PS=2d QR=2d,
  5
                                           73g.
                                 , Q, R 6',
                  , S, PQ, QR RS ( ,
PS).
         \dot{P}Q = RS (
                     0^{\wedge} = /?, A_1 A_2 - 2d A_2 C_2 - R,
                    (-/, 0) (+/, 0).
                      R
                                       21.
    2(/-/?) ( l^{\prime}R) 0 ( IsSzR),
                 2(/-)<2d<2(/+/?)
                                  d, I, R
                    /---Rd & - R.
```


$$2\{ 2, -2 \}$$

$$2\{ 2, -2 \}$$

$$2(0, -1) = (0, -1)$$

15*

2:

$$\begin{cases} x := -j - (xi + **) \\ = -j - (1 + i) - i \end{cases}$$
 [2]

2d, ,

$$(*i - 4)^2 + \sim * = < I -$$
 [3]

[1], [2], [3]

$$2, 2, \ll 1$$
 2.
 $x_{lt}, 2, 2, 2$
[1], [2] [3]:

$$\begin{cases} x = \sqrt{2} - R(\cos s & \text{e} + \text{o} s & 2), \\ = -\text{g}^{-1} R(\sin s & \text{e} + \text{o} \sin s & 2), \end{cases}$$
[2']

{
$$?(\cos -\cos _2) - 2/$$
}² + $R^2(\sin -\sin a_2)^2 = 4d^2$. [3']

[2'] [3']

$$| = R \cos \frac{\alpha_1}{2} \cos \frac{\alpha_1 - \alpha_2}{2},$$

$$| y = R \cdot \sin \frac{\alpha_2 - \alpha_2}{2},$$
[21]

/?2 s i
$$n^{\alpha_{1}} = \frac{\pi^{2}}{2} / +$$
? / s i $n^{\alpha_{1}} = posin^{\frac{1}{2}} = \frac{e^{2}}{2} - f^{-\frac{1}{2}} = d^{2}$. [31]

$$x^2 + y^2$$
 $R^2 = \cos^* 2 = p$, [4]

$$2 - x^2 - y^2 = \frac{2}{2} \sin \frac{\alpha_1 - \alpha_2}{2},$$
 [5]

$$2Rl \sin pjp \sin = rf^2 - /^2 - R^2 + ^2 + ^2, []$$

$$\{ 2 + \frac{1}{2} - rf^2 - (;t^2 - Hy^2) \}^2 =$$

$$= 4 \frac{2}{2} \sum_{sin} 2^{-1} - \frac{1}{2} \sum_{sin} 8^{-i} p^{2}$$
[6']

[6'] [4], :
$$\{.R^8 + l^2 - d^2 - (*^2 + ^2)\}^2 (^2 + ^2) =$$

$$= 4R4^2 \sin^2 ^{^*} \sim^2 \sin^* ? \cos^2 ^{^*} ;$$

$$, \qquad [2''] \qquad [5]$$

$$, \qquad 4/ (R^2 - x^2 - y^*) =$$

$$= 4R4^2 \sin^2 \frac{^*}{2} 4 + ^? \sin^2 y p \cos^{*a} - 4p.$$

$$: \qquad (R^2 - l^2 - d^* - (x^2 + y^2))^2 (x^2 + y^2) = 4Ry^2 (R^2 - x^2 - y^2). [7]$$

$$\stackrel{?}{R}, I \quad d, \qquad -$$

$$, \qquad , \qquad ,$$

$$R^2 - 2 - \binom{2}{2} > 0, \qquad 2 - l - 2 < R^2,$$

$$2 - l - 2 = R^2.$$

$$, \qquad , \qquad ,$$

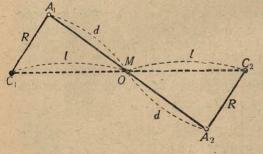
$$2 - l - 2 = R^2.$$

$$, \qquad , \qquad ,$$

$$| - | \sin 0.$$

$$[7]$$

$$(R^* + l^2 - (i^2 - 2))^2 = 4l^2 \sin^2 6 \cdot (R^2 - 2);$$


$$\sin 0, \qquad -$$

$$4 - \sin 6 = \frac{(R^2 - l) + (l^2 - rf^2)}{2l \sqrt{l^2 - r^2}}. [8]$$

$$\frac{(\#2 - / + 8 - tf2)}{2I\sqrt{-* - *}} | \leq 1,$$

(,,

$$R^2-\{d+1\}^2< [9]$$

Черт. 75

C]AjO _{2 2}0

1,

[7],

R, d / -

/?2-frf2 = /2. [10]

R, d /

$$R = 8, d = 6, / = 10; \pm \sin 0$$

$$= \frac{128 - \frac{2}{20/64 - \frac{2}{1}}}{20/64 - \frac{2}{1}}$$

. 76

$$8^2 - 1^3 < 2 < 8^2 - 4^2$$

<1/48~6,93.

	0,0	0,5	1,0	1,5		6,0	6,5	6,75	1 is? V
/-2	0,00	0,25	1,00	2,25		36,00	42,25	45,56	48
64 — ²	64,00	63,75	63,00	61,75		28,00	21,75	18,44	16
$V\overline{64}$	8,00	7,98	7,94	7,86		5,29	4,66	4,29	4
20 / 4 2	160	160	159	157		105	93	86	80
128 - 2	128	128	127	126		92	86	82	80
sin 0	0,80	0,80	0,80	0,80	3.70	0,87	0,92	0,96	1
V^rsinfl	0,00	0,40	1 0,80	1,20	110 6	5,22	5,68	6,47	6,93

1.

(-)-)
$$-2 \qquad \stackrel{\pi}{\sim} \leqslant \emptyset \leqslant + \frac{\pi}{2}.$$

 $\frac{1}{1} = \frac{(Rt-r^*) + (\&-<\#)}{1 + 2 + 3}.$

[9].

, $(d R^2-)2 0, RK\langle d-l\rangle.$ [HI

 $?</R^{l}-d$

 $d > I R^{\wedge}Cd-l$.

[9] [11]

,

 $R^2 - (<*-/) >> ,$ $tf^2 - (rf + /)^2 < ,$

$$7 = \sqrt{\frac{2 - (-x^* - l)^* < l?}{2 - (-x^* - l)^* < l?}};$$

$$- r \sim R - d - l, - < R d^l$$
[14]

$$R^* - (d+l)^2 > 0, \qquad R^* > d-1,$$

$$[9],$$

$$- < - . \qquad [15]$$

$$\delta = \frac{1}{r} = s/R^* - (d+l)^* > 0. \qquad [16]$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < (),$$

$$- < ()$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < (),$$

$$- < (),$$

$$- < () > 0.$$

$$- < (),$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

$$- < () > 0.$$

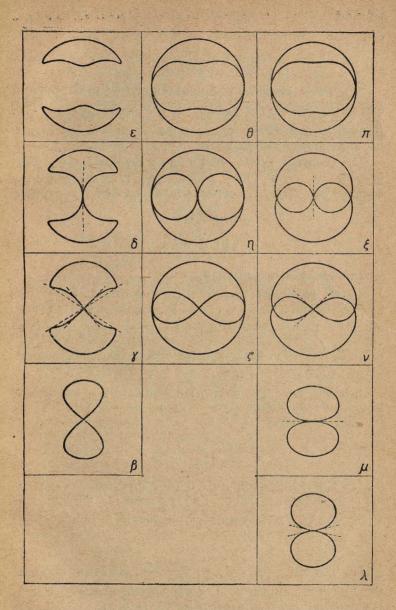
$$- < () > 0.$$

$$-$$

```
< '()!>0,
                                                              [18],
                                                  11
d-\-R ≰
                                         [12],
     1,
                                                                        [19]
                               \sqrt{R^2+d^2}
                                                                        [20]
           \ll ' = \frac{1}{g} - (R^* - r^2) \sim {}^{Y}r (r - p)[r - f p),
                                                                       [21]
                                                         <?()
                                      [20]
                                        d<^l
                   d = l \quad d^{>} I
```

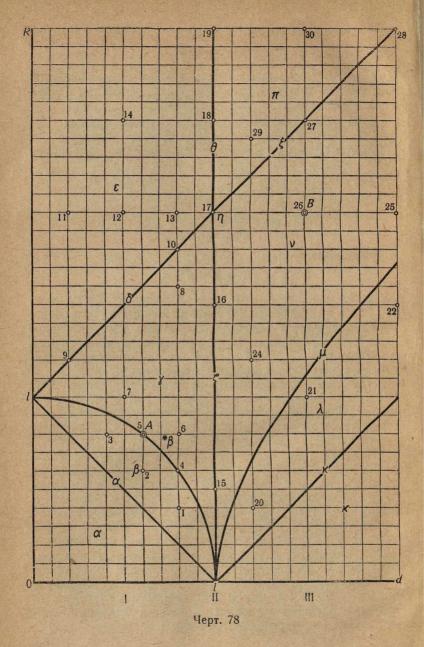
d, /?, U

```
III. d > l.
         I. d<l.
() d + R \leqslant l;
                                                                                                                                                                                                                                                                                                                                         (x)R + l \le d;
(A)/?-)-/><*, d2 >/a-p/?2.,
< + >*. rf* + #<sup>2</sup></<sup>2</sup>;
() *-|-/ * /2, R<d + l;
                                                                                                                                                                                                                                                                                                                                         00 rf<sup>3</sup> = /^2 + tf<sup>3</sup>;


\binom{0}{v} ri<sup>2</sup> \binom{2}{2} + \binom{2}{v} 
 ()R = d + l;
 (\ll) R > d + l.
                                                                                                                                                                                                                                                                                                                                         (0R = d + 1)
                                                                                                                                                                                                                                                                                                                                         (it) R>d + 1.
         II. d = l.
                                                                                         (?) R < d + l;
(n) /? = </+/;
                                                                                         (0) Rrf + /.
                                                                                                                           77).
                                                                                                                                                                                                                                                         j I. d<l.~
                                                                                                                                                                                                                                                                                                                                                                                                      0 < < (0)
                                                                                                                                                                                     tp ()
                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                       0.
                                                                                                                                   \frac{R^* - f - l^* - d^*}{/[(R + ip - f^2)] - (R^* - l)^2]} - \left(0 < \theta_0 < \frac{\pi}{2}\right),
                                                        tg &
                                     ( *).
                                                                                                                                                                                                                                                                                                                                    d^2-|R^a=l^2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11
```

$$tg^{0}o = \frac{R}{>---}*$$
(). () $0 < < ---$

$$g(), \qquad < (0)$$


$$1. \qquad 0 -$$

$$6_{0} \quad 0!, \qquad tg \theta_{1} = \frac{\sqrt{l^{2}-d^{2}}}{d}, \qquad ($$
(5).
$$6_{0} \qquad \frac{\pi}{2}: \qquad -$$
()
$$1 \qquad (), \qquad < <) \qquad r < r < \rho$$
1. ()
$$\frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{$$

 ± 0 ,

```
().
                                               ()
          -1, 9
     1
  2.
                                                    78.
dO
          d-R = U d + l = R l + R = d,
                      d^2 + R^* = P
                      l^2 + R^2 = d^2
X, v
                            1.
8, £, 6,
                                                  d, R
  I
                                           d=6, R=8,
                 /=10
/= 10.
                                         R=8,
                         d=6
            [3*
             (5.
        77 ),
                           d=3, R=4, I=2.
                                       v: (3,4)
            1=2
                                                     5,
                               V.
                                                     239
```


3.

d, R, I,

d, R, I

d, R, I1:

5 £ ¢ *1

1) 4,2,5 6) 4,4,5 9) 1,6,5 11) 1,10,5 15)2,1,2 17) 1,2,1

2) 3,3,5 7) 1,2,2 10) 4,9,5 12) 1, 4,2 16) 2,3,2

3) 2,4,5 8) 4,8,5 13) 4,10,5

13) 4,10,5

14) 1, 5,2

4.

1 ") (,6),

2) —

(,(3, ,3).

d < l.

5.

R, - I.

16 . .

241

fs

G $\frac{.231}{.y = r sin 6}$,

6. $\frac{.2}{.y = r sin 6}$,

74) $\frac{.2}{.x = r sin 6}$, $\frac{.}{.x = r sin 6}$,

$$f(x) = \frac{1^{2}4}{+} + \frac{1}{+}$$

2.

$$f(x) = Ax + \frac{B}{x} \quad (A > 0, B > 0)$$

$$\vdots \quad 0$$

$$= 1/^{\wedge} \quad \frac{\overline{B}}{A} \quad 2 yf \quad , \qquad \overline{,}$$
or
$$\sqrt{\frac{B}{A}} \quad \text{no } \infty,$$

$$+4=$$
 $\frac{2}{x}$ $+(\sqrt{x}-\sqrt{x})^2$.

16*

() v() 2'. 3. 4. v () u(x)-v(x)4'. 5'. (); ifl () 6. 7. (), ()). « 0.

[1]

$$h(\cdot) = (-+2) \cdot f(-) \frac{1}{x-a}$$

$$((\cdot)) > 0. \qquad [I'.]$$

$$o(\epsilon) = \frac{1}{x} = \frac{1}{x} > \emptyset,$$

$$f\%(x) :$$

$$(\cdot) = (-+2) \cdot (-\wedge \cdot \frac{1}{x}) - a - \sqrt{\frac{\beta}{a-x}})^2 (-\sqrt{x}) = \frac{1}{x}$$

$$(\cdot^*) = (-4^*2 - -(\wedge - -\sqrt{\frac{\beta}{a-x}})^2 (-\sqrt{x}) - \sqrt{\frac{\beta}{a-x}})^2 (-\sqrt{x}) = \frac{1}{x}$$

$$(\cdot -a) = (-1), \qquad -a = ($$

$$a - \frac{\beta}{4} < x < \alpha + \beta$$
);
$$-(-1) + \frac{1}{cm - bn \ an - ct} : (am - 1)^{2};$$

$$(-am)^{-3} - 2(-ct) + (cm - bn) = \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \begin{vmatrix} I & 0 \\ 0 & I \end{vmatrix} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \begin{vmatrix} I & 0 \\ 0 & I \end{vmatrix} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \begin{vmatrix} I & 0 \\ 0 & I \end{vmatrix} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2}, R = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0;$$

$$(\frac{R}{ab} | a^{2},$$

-f()

=- {]\ R < 0R > 01 /->0 (,, <0 (,, $\begin{vmatrix} 1-2 & * \\ I & b \end{vmatrix} = 0,$ $R = \begin{vmatrix} I & I & -I \\ I & b & I \end{vmatrix}$ $r = \begin{vmatrix} I & I & I \\ I & I & I \end{vmatrix}$ $^{\wedge} = - = am - = 0, ^{\wedge},$ [["] = 0, , = 0[I""] f()= 0, 6 0 [II] f(x)/2(); =0, 6=0,[1-]

[I"], [I"'], [II] [II']

1.

$$/ = \frac{2 - 1}{* - 2 - 3}$$

$$R = \begin{vmatrix} 0 & 2-1 & 0 \\ 0 & 0.2 & -1 \\ 1 & -2 & -3 & 0 \\ 0 & 1-2 & -3 \end{vmatrix} = -15 < 0; \quad - \quad - \begin{vmatrix} 0 & 2 \\ 1 & -2 \end{vmatrix} = -2 < 0.$$

$$f(x) = \frac{2}{-1 + \left(x - \frac{1}{2}\right) - \frac{\frac{15}{4}}{x - \frac{1}{2}}}.$$

2.

$$f(x) = \frac{2}{x+1}.$$

$$R = \begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix} = 4 > 0; = \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} = -2 < 0.$$

in the

$$\begin{vmatrix} 1-2 \\ 020 \\ 101 \end{vmatrix} = 0, \dots 2-1-0.$$

$$\frac{1}{(x^{2})^{2}} = \begin{cases} \frac{2}{24 \cdot (\sqrt{-x})^{2}} & \text{(shown in the problem)} \\ \frac{2}{24 \cdot (\sqrt{-x})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot (\sqrt{-x} - \frac{1}{\sqrt{-x}})^{2}} & \text{(shown in the problem)} \\ -\frac{2}{24 \cdot ($$

$$R = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 - 1 & 1 \end{vmatrix} = 4 > 0; = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = -2 < 0.$$

$$, \qquad 2,$$

$$\begin{vmatrix} 1 & 9 & \text{jt-} \\ 1 & 1 & 1 \\ 1 - 1 & 1 \end{vmatrix} = 0, \dots ^{2} - 1 = 0.$$

$$/(*)=!+\frac{2}{X^{3}-X+1}=\left\{\begin{array}{ccc} 1+\frac{2}{1+\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}} & -*>0), \\ 1-\frac{2}{1+\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}} & -*>0\end{array}\right\},$$

$$\frac{2+4+1}{W-*2-2+1}$$

$$R = . \begin{vmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{vmatrix} = 36 > 0; / = \begin{vmatrix} 1 & 4 \\ 1 - 2 \end{vmatrix} = -6 < 0.$$

$$\begin{vmatrix} 1 - 2 & * \\ 1 & 4 & 1 \\ 1 - 2 & 1 \end{vmatrix} = 0, \qquad ^{2}-1 = 0.$$

$$= 1 \qquad ($$

$$fix) = 1 + 2 \frac{6x}{2 + 1} = \begin{cases} 1 + \frac{6}{1 - \frac{1}{2}} & > 0, \\ 1 - \frac{6}{1 - \frac{1}{2}} & - \frac{1}{2} & > 0, \\ 4 + (\frac{1}{2} - \frac{1}{2} - \frac{1}{2}) & > 0, \end{cases}$$

	Market State of the State of th	ng kito m	turning a second		
				2	*
1.		IX,		+ 2	
*3		IX,		2 +	1
.4		IX,			
• 5		IX,		+,	
• 6		1 2	, .	+ +	4
*7		1 ₂ IX,		+ + 2	1,(22 I) (15 I)
8		IX,		+	(17 I)
9	().				4.9
).	IX,		+	4,8

-	A CONTRACTOR OF THE PARTY OF TH		The second second	
1	-	1	*	, 3
*•10	IX,		\ +	
-11	1 4	,	2 +	1
•12		,		
13	1 4		+	(9 I)
13	Xi		+	-
*14	Xi			
•15		130	BER FR	
15	2		2	
•16		,	2 +	
•17	2		+	15
•18	X		+	15
*•19	2		2 +	15
	X—XI	<u>-</u>	2 +	8
•20	X-XI	, -		15
*21	X-XI	,	2 +	15
	1		+	23 1 15,

					2053.00
		-			Se Sucres
*22		X—XI	,		
		V VI		+ 2	_
* 2 3 *24		X—XI		+	(19 I)
			-		
				2+	21
		1		2.7	
		, –			
s —				[I] (.	"
,	(*)		,		
		(•)			,
			(,	
).		
			-		

1.		8
2.		
3.		
4.		
		45
5.		
6.		53
7.		THE DAY OF BUILDING
8.		
9.		
)	90
10.		97
11.		101
12.		111
13.		118
14.		126
15.		129
16.		
		141
17.		147
18.		
19.		
20.		179
21.		191
22.		203
23.		214

., 30.

. , ,